On the Relation between the Common Labelling and the Median Graph

  • Nicola Rebagliati
  • Albert Solé-Ribalta
  • Marcello Pelillo
  • Francesc Serratosa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7626)

Abstract

In structural pattern recognition, given a set of graphs, the computation of a Generalized Median Graph is a well known problem. Some methods approach the problem by assuming a relation between the Generalized Median Graph and the Common Labelling problem. However, this relation has still not been formally proved. In this paper, we analyse such relation between both problems. The main result proves that the cost of the common labelling upper-bounds the cost of the median with respect to the given set. In addition, we show that the two problems are equivalent in some cases.

Keywords

Cost Function Weighted Graph Virtual Node Graph Match Permutation Matrice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Jiang, X., Müunger, A., Bunke, H.: On median graphs: Properties, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1144–1151 (2001)CrossRefGoogle Scholar
  2. 2.
    Dickinson, P.J., Bunke, H., Dadej, A., Kraetzl, M.: Matching graphs with unique node labels. Pattern Anal. Appl. 7(3), 243–254 (2004)MathSciNetGoogle Scholar
  3. 3.
    Zeng, Z., Tung, A.K.H., Wang, J., Feng, J., Zhou, L.: Comparing stars: on approximating graph edit distance. In: Proc. VLDB Endow., vol. 2(1), pp. 25–36 (August 2009)Google Scholar
  4. 4.
    Ferrer, M., Serratosa, F., Sanfeliu, A.: Synthesis of Median Spectral Graph. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005, Part II. LNCS, vol. 3523, pp. 139–146. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Ferrer, M., Serratosa, F., Valveny, E.: Evaluation of Spectral-Based Methods for Median Graph Computation. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds.) IbPRIA 2007, Part II. LNCS, vol. 4478, pp. 580–587. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Ferrer, M., Valveny, E., Serratosa, F., Riesen, K., Bunke, H.: Generalized median graph computation by means of graph embedding in vector spaces. Pattern Recognition 43(4), 1642–1655 (2010)MATHCrossRefGoogle Scholar
  7. 7.
    Hlaoui, A., Wang, S.: Median graph computation for graph clustering. Soft Computing - A Fusion of Foundations, Methodologies and Applications 10, 47–53 (2006)Google Scholar
  8. 8.
    Jain, B.J., Wysotzki, F.: Central clustering of attributed graphs. Machine Learning 56, 169–207 (2004)MATHCrossRefGoogle Scholar
  9. 9.
    Jain, B., Obermayer, K.: Elkan’s k-Means Algorithm for Graphs. In: Sidorov, G., Hernández Aguirre, A., Reyes García, C.A. (eds.) MICAI 2010, Part II. LNCS, vol. 6438, pp. 22–32. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Solé-Ribalta, A., Serratosa, F.: Graduated Assignment Algorithm for Finding the Common Labelling of a Set of Graphs. In: Hancock, E.R., Wilson, R.C., Windeatt, T., Ulusoy, I., Escolano, F. (eds.) SSPR&SPR 2010. LNCS, vol. 6218, pp. 180–190. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Solé-Ribalta, A., Serratosa, F.: Models and algorithms for computing the common labelling of a set of attributed graphs. Comput. Vis. Image Underst. 115(7), 929–945 (2011)CrossRefGoogle Scholar
  12. 12.
    Justice, D., Hero, A.: A binary linear programming formulation of the graph edit distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 28, 1214 (2006)CrossRefGoogle Scholar
  13. 13.
    Mukherjee, L., Singh, V., Peng, J., Xu, J., Zeitz, M., Berezney, R.: Generalized median graphs and applications. Journal of Combinatorial Optimization 17, 21–44 (2009)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Solé-Ribalta, A.: Multiple graph matching and applications. PhD thesis, Universitat Rovira i Virgili (2012)Google Scholar
  15. 15.
    Wong, A.K.C., You, M.: Entropy and distance of random graphs with application to structural pattern recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (5), 599–609 (1985)Google Scholar
  16. 16.
    Edwards, A., Cavalli-Sforza, L.: A method for cluster analysis. Biometrics 21, 362–375 (1965)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nicola Rebagliati
    • 1
  • Albert Solé-Ribalta
    • 2
  • Marcello Pelillo
    • 1
  • Francesc Serratosa
    • 2
  1. 1.Università Ca’ Foscari VeneziaItaly
  2. 2.Universitat Rovira i VirgiliSpain

Personalised recommendations