Geometric trees can be formalized as unordered combinatorial trees whose edges are endowed with geometric information. Examples are skeleta of shapes from images; anatomical tree-structures such as blood vessels; or phylogenetic trees. An inter-tree distance measure is a basic prerequisite for many pattern recognition and machine learning methods to work on anatomical, phylogenetic or skeletal trees. Standard distance measures between trees, such as tree edit distance, can be readily translated to the geometric tree setting. It is well-known that the tree edit distance for unordered trees is generally NP complete to compute. However, the classical proof of NP completeness depends on a particular case of edit distance with integer edit costs for trees with discrete labels, and does not obviously carry over to the class of geometric trees. The reason is that edge geometry is encoded in continuous scalar or vector attributes, allowing for continuous edit paths from one tree to another, rather than finite, discrete edit sequences with discrete costs for discrete label sets. In this paper, we explain why the proof does not carry over directly to the continuous setting, and why it does not work for the important class of trees with scalar-valued edge attributes, such as edge length. We prove the NP completeness of tree edit distance and another natural distance measure, QED, for geometric trees with vector valued edge attributes.


Edit Operation Landmark Point Airway Tree Computing Distance Edge Attribute 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bille, P.: A survey on tree edit distance and related problems. Theor. Comput. Sci. 337(1-3), 217–239 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bridson, M.R., Haefliger, A.: Metric spaces of non-positive curvature. Springer (1999)Google Scholar
  3. 3.
    Demaine, E.D., Mozes, S., Rossman, B., Weimann, O.: An optimal decomposition algorithm for tree edit distance. ACM Trans. Algorithms 6, 2:1–2:19 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Demirci, F., Shokoufandeh, A., Dickinson, S.J.: Skeletal shape abstraction from examples. TPAMI 31(5), 944–952 (2009)CrossRefGoogle Scholar
  5. 5.
    Demirci, M., Platel, B., Shokoufandeh, A., Florack, L., Dickinson, S.: The representation and matching of images using top points. JMIV 35, 103–116 (2009)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Feragen, A., Hauberg, S., Nielsen, M., Lauze, F.: Means in spaces of tree-like shapes. In: ICCV (2011)Google Scholar
  7. 7.
    Feragen, A., Lauze, F., Lo, P., de Bruijne, M., Nielsen, M.: Geometries on Spaces of Treelike Shapes. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part II. LNCS, vol. 6493, pp. 160–173. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Garey, M.J., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-completeness. Freeman (1979)Google Scholar
  9. 9.
    Klein, P., Tirthapura, S., Sharvit, D., Kimia, B.: A tree-edit-distance algorithm for comparing simple, closed shapes. In: SODA, pp. 696–704 (2000)Google Scholar
  10. 10.
    Klein, P.N., Sebastian, T.B., Kimia, B.B.: Shape matching using edit-distance: an implementation. In: SODA, pp. 781–790 (2001)Google Scholar
  11. 11.
    Klein, P.N.: Computing the Edit-Distance between Unrooted Ordered Trees. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, p. 91. Springer, Heidelberg (1998)Google Scholar
  12. 12.
    Matoušek, J., Thomas, R.: On the complexity of finding iso- and other morphisms for partial k-trees. Discrete Mathematics 108(1-3), 343–364 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Metzen, J.H., Kröger, T., Schenk, A., Zidowitz, S., Peitgen, H.-O., Jiang, X.: Matching of anatomical tree structures for registration of medical images. Im. Vis. Comp. 27, 923–933 (2009)Google Scholar
  14. 14.
    Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Im. Vis. Comp. 27(7), 950–959 (2009)Google Scholar
  15. 15.
    Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing their shock graphs. TPAMI 26(5), 550–571 (2004)CrossRefGoogle Scholar
  16. 16.
    Tai, K.-C.: The tree-to-tree correction problem. J. ACM 26, 422–433 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Torsello, A., Robles-Kelly, A., Hancock, E.R.: Discovering shape classes using tree edit-distance and pairwise clustering. IJCV 72(3), 259–285 (2007)CrossRefGoogle Scholar
  18. 18.
    Touzet, H.: A Linear Tree Edit Distance Algorithm for Similar Ordered Trees. In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005. LNCS, vol. 3537, pp. 334–345. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Trinh, N., Kimia, B.: Skeleton search: Category-specific object recognition and segmentation using a skeletal shape model. IJCV, 1–26 (2011)Google Scholar
  20. 20.
    Tschirren, J., McLennan, G., Palágyi, K., Hoffman, E.A., Sonka, M.: Matching and anatomical labeling of human airway tree. TMI 24(12), 1540–1547 (2005)Google Scholar
  21. 21.
    Weibel, E.R.: What makes a good lung? Swiss Med. Weekly 139(27-28), 375–386 (2009)Google Scholar
  22. 22.
    Zhang, K., Statman, R., Shasha, D.: On the editing distance between unordered labeled trees. Inf. Process. Lett. 42(3), 133–139 (1992)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Aasa Feragen
    • 1
  1. 1.Department of Computer ScienceUniversity of CopenhagenCopenhagenDenmark

Personalised recommendations