Skip to main content

Applying Piecewise Approximation in Perceptron Training of Conditional Random Fields

  • Conference paper
Advances in Intelligent Data Analysis XI (IDA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7619))

Included in the following conference series:

Abstract

We show that the recently proposed piecewise approximation approach can benefit conditional random fields estimation using the structured perceptron algorithm. We present experiments in noun-phrase chunking task on the CoNLL-2000 corpus. The results show that, compared to standard training, applying the piecewise approach during model estimation may yield not only savings in training time but also improvement in model performance on test set due to added model regularization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lafferty, J., McCallum, A., Pereira, F.C.N.: Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In: Proceedings of the Eighteenth International Conference on Machine Learning, pp. 282–289 (2001)

    Google Scholar 

  2. Collins, M.: Discriminative training methods for hidden markov models: Theory and Experiments with Perceptron Algorithms. In: Proceedings of the ACL 2002 Conference on Empirical Methods in Natural Language Processing, vol. 10, pp. 1–8. Association for Computational Linguistics (2002)

    Google Scholar 

  3. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research 6, 1453–1484 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Zhang, Y., Clark, S.: Syntactic processing using the generalized perceptron and beam search. Computational Linguistics 37(1), 105–151 (2011)

    Article  Google Scholar 

  5. Sutton, C., McCallum, A.: Piecewise training for structured prediction. Machine Learning 77(2), 165–194 (2009)

    Article  Google Scholar 

  6. Sontag, D., Meshi, O., Jaakkola, T., Globerson, A.: More data means less inference: A pseudo-max approach to structured learning. In: Lafferty, J., Williams, C.K.I., Shawe-Taylor, J., Zemel, R., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23, pp. 2181–2189 (2010)

    Google Scholar 

  7. Samdani, R., Roth, D.: Efficient decomposed learning for structured prediction. In: Proceedings of the 29th International Conference on Machine Learning (2012)

    Google Scholar 

  8. Srikumar, V., Kundu, G., Roth, D.: On amortizing inference cost for structured prediction. In: Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 1114–1124 (2012)

    Google Scholar 

  9. Vapnik, V.: An overview of statistical learning theory. IEEE Transactions on Neural Networks 10, 988–999 (1999)

    Article  Google Scholar 

  10. Freund, Y., Schapire, R.: Large margin classification using the perceptron algorithm. Machine Learning 37(3), 277–296 (1999)

    Article  MATH  Google Scholar 

  11. Daumé III, H.: Practical structured learning techniques for natural language processing. PhD thesis, University of Southern California (2006)

    Google Scholar 

  12. Kim, T., Sang, E., Buchholz, S.: Introduction to the conll-2000 shared task: Chunking. In: Proceedings of the 2nd Workshop on Learning Language in Logic and the 4th Conference on Computational Natural Language Learning, vol. 7, pp. 127–132. Association for Computational Linguistics (2000)

    Google Scholar 

  13. Marcus, M., Marcinkiewicz, M., Santorini, B.: Building a large annotated corpus of english: The penn treebank. Computational Linguistics 19(2), 313–330 (1993)

    Google Scholar 

  14. Bishop, C.: Pattern recognition and machine learning, vol. 4. Springer, New York (2006)

    MATH  Google Scholar 

  15. Frey, B., MacKay, D.: A revolution: Belief propagation in graphs with cycles. Advances in Neural Information Processing Systems, 479–485 (1998)

    Google Scholar 

  16. Wainwright, M.J., Jaakkola, T.S., Willsky, A.S.: Map estimation via agreement on trees: message-passing and linear programming. IEEE Transactions on Information Theory 51, 3697–3717 (2005)

    Article  MathSciNet  Google Scholar 

  17. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1222–1239 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ruokolainen, T. (2012). Applying Piecewise Approximation in Perceptron Training of Conditional Random Fields. In: Hollmén, J., Klawonn, F., Tucker, A. (eds) Advances in Intelligent Data Analysis XI. IDA 2012. Lecture Notes in Computer Science, vol 7619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34156-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34156-4_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34155-7

  • Online ISBN: 978-3-642-34156-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics