Skip to main content

Batch-Incremental versus Instance-Incremental Learning in Dynamic and Evolving Data

  • Conference paper
Book cover Advances in Intelligent Data Analysis XI (IDA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7619))

Included in the following conference series:

Abstract

Many real world problems involve the challenging context of data streams, where classifiers must be incremental: able to learn from a theoretically-infinite stream of examples using limited time and memory, while being able to predict at any point. Two approaches dominate the literature: batch-incremental methods that gather examples in batches to train models; and instance-incremental methods that learn from each example as it arrives. Typically, papers in the literature choose one of these approaches, but provide insufficient evidence or references to justify their choice. We provide a first in-depth analysis comparing both approaches, including how they adapt to concept drift, and an extensive empirical study to compare several different versions of each approach. Our results reveal the respective advantages and disadvantages of the methods, which we discuss in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bifet, A., Holmes, G., Pfahringer, B., Kirkby, R., Gavaldà, R.: New ensemble methods for evolving data streams. In: KDD, pp. 139–148 (2009)

    Google Scholar 

  2. Beringer, J., Hüllermeier, E.: Efficient instance-based learning on data streams. Intelligent Data Analysis 11(6), 627–650 (2007)

    Google Scholar 

  3. Zhang, P., Gao, B.J., Zhu, X., Guo, L.: Enabling fast lazy learning for data streams. In: ICDM, pp. 932–941 (2011)

    Google Scholar 

  4. John, G.H., Langley, P.: Estimating continuous distributions in bayesian classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, San Mateo, pp. 338–345. Morgan Kaufmann (1995)

    Google Scholar 

  5. Domingos, P., Hulten, G.: Mining high-speed data streams. In: KDD, pp. 71–80 (2000)

    Google Scholar 

  6. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing. In: SDM (2007)

    Google Scholar 

  7. Holte, R.C.: Very simple classification rules perform well on most commonly used datasets. Machine Learning 11, 63–91 (1993)

    Article  MATH  Google Scholar 

  8. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning algorithms. In: ICML, pp. 161–168 (2006)

    Google Scholar 

  9. Bottou, L.: Online algorithms and stochastic approximations. Online Learning and Neural Networks (1998)

    Google Scholar 

  10. Oza, N.C., Russell, S.J.: Experimental comparisons of online and batch versions of bagging and boosting. In: KDD, pp. 359–364 (2001)

    Google Scholar 

  11. Oza, N., Russell, S.: Online bagging and boosting. In: Artificial Intelligence and Statistics 2001, pp. 105–112. Morgan Kaufmann (2001)

    Google Scholar 

  12. Bifet, A., Gavaldà, R.: Adaptive Learning from Evolving Data Streams. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 249–260. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Bifet, A., Holmes, G., Pfahringer, B.: Leveraging Bagging for Evolving Data Streams. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part I. LNCS, vol. 6321, pp. 135–150. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Qu, W., Zhang, Y., Zhu, J., Qiu, Q.: Mining Multi-label Concept-Drifting Data Streams Using Dynamic Classifier Ensemble. In: Zhou, Z.-H., Washio, T. (eds.) ACML 2009. LNCS, vol. 5828, pp. 308–321. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: KDD 2003, pp. 226–235. ACM, New York (2003)

    Chapter  Google Scholar 

  16. Spyromitros-Xioufis, E., Spiliopoulou, M., Tsoumakas, G., Vlahavas, I.: Dealing with concept drift and class imbalance in multi-label stream classification. In: IJCAI, pp. 1583–1588 (2011)

    Google Scholar 

  17. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: Massive Online Analysis. Journal of Machine Learning Research, JMLR (2010)

    Google Scholar 

  18. Street, W.N., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale classification. In: KDD, pp. 377–382 (2001)

    Google Scholar 

  19. Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: KDD, pp. 97–106 (2001)

    Google Scholar 

  20. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth (1984)

    Google Scholar 

  21. Asuncion, A., Newman, D.: UCI machine learning repository (2007)

    Google Scholar 

  22. Gama, J., Rocha, R., Medas, P.: Accurate decision trees for mining high-speed data streams. In: KDD, pp. 523–528 (2003)

    Google Scholar 

  23. Harries, M.: Splice-2 comparative evaluation: Electricity pricing. Technical report, The University of South Wales (1999)

    Google Scholar 

  24. Gama, J., Medas, P., Castillo, G., Rodrigues, P.: Learning with Drift Detection. In: Bazzan, A.L.C., Labidi, S. (eds.) SBIA 2004. LNCS (LNAI), vol. 3171, pp. 286–295. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  25. Lang, K.: The 20 newsgroups dataset (2008), http://people.csail.mit.edu/jrennie/20Newsgroups/

  26. Read, J., Bifet, A., Holmes, G., Pfahringer, B.: Scalable and efficient multi-label classification for evolving data streams. Machine Learning, 1–30 (2012)

    Google Scholar 

  27. Demšar, J.: Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research 7, 1–30 (2006)

    MATH  Google Scholar 

  28. Bifet, A., Holmes, G., Pfahringer, B., Frank, E.: Fast Perceptron Decision Tree Learning from Evolving Data Streams. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS, vol. 6119, pp. 299–310. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Read, J., Bifet, A., Pfahringer, B., Holmes, G. (2012). Batch-Incremental versus Instance-Incremental Learning in Dynamic and Evolving Data. In: Hollmén, J., Klawonn, F., Tucker, A. (eds) Advances in Intelligent Data Analysis XI. IDA 2012. Lecture Notes in Computer Science, vol 7619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34156-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34156-4_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34155-7

  • Online ISBN: 978-3-642-34156-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics