Skip to main content

Fuzzy Frequent Pattern Mining in Spike Trains

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNISA,volume 7619)

Abstract

We present a framework for characterizing spike (and spike-train) synchrony in parallel neuronal spike trains that is based on identifying spikes with what we call influence maps: real-valued functions describing an influence region around the corresponding spike times within which possibly graded synchrony with other spikes is defined. We formalize two models of synchrony in this framework: the bin-based model (the almost exclusively applied model in the literature) and a novel, alternative model based on a continuous, graded notion of synchrony, aimed at overcoming the drawbacks of the bin-based model. We study the task of identifying frequent (and synchronous) neuronal patterns from parallel spike trains in our framework, formalized as an instance of what we call the fuzzy frequent pattern mining problem (a generalization of standard frequent pattern mining) and briefly evaluate our synchrony models on this task.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-34156-4_27
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-34156-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   74.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles, M.: Local Cortical Circuits: An Electrophysiological Study. Springer, Heidelberg (1982)

    CrossRef  Google Scholar 

  2. Hebb, D.O.: The Organization of Behavior. J. Wiley & Sons, New York (1949)

    Google Scholar 

  3. Abeles, M.: Role of the cortical neuron: integrator or coincidence detector? Israel Journal of Medical Science 18, 83–92 (1982)

    Google Scholar 

  4. Goedeke, S., Diesmann, M.: The mechanism of synchronization in feed-forward neuronal networks. New Journal of Physics 10, 015007 (2008)

    CrossRef  Google Scholar 

  5. König, P., Engel, A.K., Singer, W.: Integrator or coincidence detector? The role of the cortical neuron revisited. Trends in Neuroscience 19, 130–137 (1996)

    CrossRef  Google Scholar 

  6. Buzsáki, G.: Large-scale recording of neuronal ensembles. Nature Neuroscience 7, 446–461 (2004)

    CrossRef  Google Scholar 

  7. Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)

    MathSciNet  MATH  CrossRef  Google Scholar 

  8. Gerstein, G.: Gravitational clustering. In: Analysis of Parallel Spike Trains, pp. 157–172. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  9. Grün, S., Diesmann, M., Grammont, F., Riehle, A., Aertsen, A.: Detecting unitary events without discretization of time. Journal of Neuroscience Methods 93, 67–79 (1999)

    CrossRef  Google Scholar 

  10. Grün, S., Diesmann, M., Aertsen, A.: Unitary event analysis. In: Analysis of Parallel Spike Trains, pp. 191–218. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  11. Feldt, S., Waddell, J., Hetrick, V.L., Berke, J.D., Zochowski, M.: A functional clustering algorithm for the analysis of dynamic network data. Physical Review E: Statistical, Nonlinear and Soft Matter Physics 79 (2009)

    Google Scholar 

  12. Gerstein, G.L., Perkel, D.H., Subramanian, K.N.: Identification of functionally related neural assemblies. Brain Research 140, 43–62 (1978)

    CrossRef  Google Scholar 

  13. Syropoulos, A.: Mathematics of multisets. In: Calude, C.S., Pun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing. LNCS, vol. 2235, pp. 347–358. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  14. Tuckwell, H.C.: Introduction to Theoretical Neurobiology, vols. I and II. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  15. Wang, X., Borgelt, C., Kruse, R.: Mining fuzzy frequent item sets. In: Proceedings of the 11th International Fuzzy Systems Association World Congress (IFSA 2005), p. 533. Tsinghua University Press and Springer (2005)

    Google Scholar 

  16. Delgado, M., Marín, N., Sánchez, D., Vila, M.-A.: Fuzzy association rules: general model and applications. IEEE Transactions on Fuzzy Systems 11, 214–225 (2003)

    CrossRef  Google Scholar 

  17. Goethals, B.: Frequent set mining. In: Data Mining and Knowledge Discovery Handbook, pp. 377–397. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  18. Louis, S., Borgelt, C., Grün, S.: Generation and selection of surrogate methods for correlation analysis. In: Analysis of Parallel Spike Trains, pp. 359–382 (2010)

    Google Scholar 

  19. Kuhn, A., Aertsen, A., Rotter, S.: Higher-order statistics of input ensembles and the response of simple model neurons. Neural Computation 15, 67–101 (2003)

    MATH  CrossRef  Google Scholar 

  20. Grün, S.: Data-driven significance estimation of precise spike correlation. Journal of Neurophysiology 101, 1126–1140 (2009)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Picado Muiño, D., Castro León, I., Borgelt, C. (2012). Fuzzy Frequent Pattern Mining in Spike Trains. In: Hollmén, J., Klawonn, F., Tucker, A. (eds) Advances in Intelligent Data Analysis XI. IDA 2012. Lecture Notes in Computer Science, vol 7619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34156-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34156-4_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34155-7

  • Online ISBN: 978-3-642-34156-4

  • eBook Packages: Computer ScienceComputer Science (R0)