Fuzzy Frequent Pattern Mining in Spike Trains

  • David Picado Muiño
  • Iván Castro León
  • Christian Borgelt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7619)


We present a framework for characterizing spike (and spike-train) synchrony in parallel neuronal spike trains that is based on identifying spikes with what we call influence maps: real-valued functions describing an influence region around the corresponding spike times within which possibly graded synchrony with other spikes is defined. We formalize two models of synchrony in this framework: the bin-based model (the almost exclusively applied model in the literature) and a novel, alternative model based on a continuous, graded notion of synchrony, aimed at overcoming the drawbacks of the bin-based model. We study the task of identifying frequent (and synchronous) neuronal patterns from parallel spike trains in our framework, formalized as an instance of what we call the fuzzy frequent pattern mining problem (a generalization of standard frequent pattern mining) and briefly evaluate our synchrony models on this task.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abeles, M.: Local Cortical Circuits: An Electrophysiological Study. Springer, Heidelberg (1982)CrossRefGoogle Scholar
  2. 2.
    Hebb, D.O.: The Organization of Behavior. J. Wiley & Sons, New York (1949)Google Scholar
  3. 3.
    Abeles, M.: Role of the cortical neuron: integrator or coincidence detector? Israel Journal of Medical Science 18, 83–92 (1982)Google Scholar
  4. 4.
    Goedeke, S., Diesmann, M.: The mechanism of synchronization in feed-forward neuronal networks. New Journal of Physics 10, 015007 (2008)CrossRefGoogle Scholar
  5. 5.
    König, P., Engel, A.K., Singer, W.: Integrator or coincidence detector? The role of the cortical neuron revisited. Trends in Neuroscience 19, 130–137 (1996)CrossRefGoogle Scholar
  6. 6.
    Buzsáki, G.: Large-scale recording of neuronal ensembles. Nature Neuroscience 7, 446–461 (2004)CrossRefGoogle Scholar
  7. 7.
    Zadeh, L.A.: Fuzzy sets. Information and Control 8, 338–353 (1965)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Gerstein, G.: Gravitational clustering. In: Analysis of Parallel Spike Trains, pp. 157–172. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Grün, S., Diesmann, M., Grammont, F., Riehle, A., Aertsen, A.: Detecting unitary events without discretization of time. Journal of Neuroscience Methods 93, 67–79 (1999)CrossRefGoogle Scholar
  10. 10.
    Grün, S., Diesmann, M., Aertsen, A.: Unitary event analysis. In: Analysis of Parallel Spike Trains, pp. 191–218. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Feldt, S., Waddell, J., Hetrick, V.L., Berke, J.D., Zochowski, M.: A functional clustering algorithm for the analysis of dynamic network data. Physical Review E: Statistical, Nonlinear and Soft Matter Physics 79 (2009)Google Scholar
  12. 12.
    Gerstein, G.L., Perkel, D.H., Subramanian, K.N.: Identification of functionally related neural assemblies. Brain Research 140, 43–62 (1978)CrossRefGoogle Scholar
  13. 13.
    Syropoulos, A.: Mathematics of multisets. In: Calude, C.S., Pun, G., Rozenberg, G., Salomaa, A. (eds.) Multiset Processing. LNCS, vol. 2235, pp. 347–358. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Tuckwell, H.C.: Introduction to Theoretical Neurobiology, vols. I and II. Cambridge University Press, Cambridge (1988)Google Scholar
  15. 15.
    Wang, X., Borgelt, C., Kruse, R.: Mining fuzzy frequent item sets. In: Proceedings of the 11th International Fuzzy Systems Association World Congress (IFSA 2005), p. 533. Tsinghua University Press and Springer (2005)Google Scholar
  16. 16.
    Delgado, M., Marín, N., Sánchez, D., Vila, M.-A.: Fuzzy association rules: general model and applications. IEEE Transactions on Fuzzy Systems 11, 214–225 (2003)CrossRefGoogle Scholar
  17. 17.
    Goethals, B.: Frequent set mining. In: Data Mining and Knowledge Discovery Handbook, pp. 377–397. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Louis, S., Borgelt, C., Grün, S.: Generation and selection of surrogate methods for correlation analysis. In: Analysis of Parallel Spike Trains, pp. 359–382 (2010)Google Scholar
  19. 19.
    Kuhn, A., Aertsen, A., Rotter, S.: Higher-order statistics of input ensembles and the response of simple model neurons. Neural Computation 15, 67–101 (2003)zbMATHCrossRefGoogle Scholar
  20. 20.
    Grün, S.: Data-driven significance estimation of precise spike correlation. Journal of Neurophysiology 101, 1126–1140 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • David Picado Muiño
    • 1
  • Iván Castro León
    • 1
  • Christian Borgelt
    • 1
  1. 1.European Centre for Soft ComputingMieresSpain

Personalised recommendations