Skip to main content

Integrated DEM Construction and Calibration of Hyperspectral Imagery: A Remote Sensing Perspective

  • Chapter
  • First Online:

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

In this study, we present from a remote sensing perspective a method for the combination of surface gradient information obtained by photoclinometry and shape from shading with absolute depth data (here: light detection and ranging (LIDAR) data) by exploiting their respective advantages, regarding distinctly non-Lambertian surfaces with non-uniform albedos. While photometry-based 3D reconstruction methods yield reliable small-scale surface gradient information for each image pixel, absolute depth data which are typically noisy on small scales but reliable on large scales are provided by LIDAR techniques. The first step of the proposed algorithm consists of an extended photoclinometry approach which takes into account both image and LIDAR data. In a second step the reconstructed surface is refined based on an iterative scheme relying on the minimisation of a global error functional, thus compensating the inaccuracies of the measured surface gradients and the LIDAR data on the respective scales. The surface shape and non-uniform albedo map represent the best fit to the observed image radiances and LIDAR data. We apply our framework to the construction of digital elevation models (DEM) of lunar surface regions. We use hyperspectral imagery in order to employ the DEM to normalise the wavelength-dependent surface reflectance to a standard illumination and viewing geometry. Although we employ a highly realistic, physically motivated reflectance model (the Hapke model), systematic topography-dependent distortions of the pixel spectra occur, which lead to errors in the extracted spectral parameters (e.g. the absorption wavelength, depth, and width of prominent absorption troughs) and for which we propose an empirical, PCA-based correction approach. Based on the correspondingly corrected surface reflectances we obtain a refined DEM along with spectral parameter maps in which (except for the hydroxyl absorption) topographic effects are nearly completely removed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agrawal, A., Raskar, R., Chellappa, R.: What is the range of surface reconstructions from a gradient field? In: Leonardis, A., Bischof, H., Pinz, A. (eds.) Proceedings of European Conference on Computer Vision. Lecture Notes in Computer Science, vol. 3951, pp. 578–591. Springer (2006)

    Google Scholar 

  2. Akima, H.: A new method of interpolation and smooth curve fitting based on local procedures. J. Assoc. Comput. Mach. 17(4), 589–602 (1970)

    Article  MATH  Google Scholar 

  3. Burns, R.G., Abu-Eid, R.M., Huggins, F.E.: Crystal field spectra of lunar pyroxenes. In: Proceedings of Lunar Science Conference, vol. 2, pp. 533–543. Lunar and Planetary Institute, Houston (1972)

    Google Scholar 

  4. Bussey, D.B.J., McGovern, J.A., Spudis, P.D., Neish, C.D., Sörensen, S.A.: Lunar polar illumination conditions derived using Kaguya laser data. In: Proceedings of Annual Meeting of LEAG. Lunar and Planetary Institute, Houston (2009)

    Google Scholar 

  5. Chandrasekhar, S.: Radiative Transfer. Dover, New York (1960)

    Google Scholar 

  6. Clark R., Pieters, C.M., Green, R.O., Boardman, J., Buratti, B.J., Head, J.W., Isaacson, P.J., Livo, K.E., McCord, T.B., Nettles, J.W., Petro, N.E., Sunshine, J.M., Taylor, L.A.: Water and Hydroxyl on the Moon as seen by the Moon Mineralogy Mapper (M3). In: Proceedings of Lunar Planetary Science XXXXI, abstract #2302. Lunar and Planetary Institute, Houston (2010)

    Google Scholar 

  7. Cryer, J.E., Tsai, P.-S., Shah, M.: Integration of shape from shading and stereo. Pattern Recognit. 28(7), 1033–1043 (1995)

    Article  Google Scholar 

  8. Dhingra, D., Pieters, C.M., Isaacson, P., Staid, M., Mustard, J., Klima, R., Taylor, L.A., Kramer, G., Nettles, J., M3 team: Spectroscopic signature of the high titanium basalts at mare tranquillitatis from Moon Mineralogy Mapper (M3). In: Proceedings of Lunar Planetary Science XXXXI, abstract #2494. Lunar and Planetary Institute, Houston (2010)

    Google Scholar 

  9. Gaddis, L.R., Staid, M.I., Tyburczy, J.A., Hawke, B.R., Petro, N.E.: Compositional analyses of lunar pyroclastic deposits. Icarus 161, 262–280 (2003)

    Article  Google Scholar 

  10. Grieger, B., Beauvivre, S., Despan, D., Erard, S., Josset, J.-L., Koschny, D.: Investigating a peak of (almost) eternal light close to the lunar south pole with SMART-1/AMIE images. In: Proceedings of European Planetary Science Congress, EPSC2008-A-00205, Münster, Germany (2008)

    Google Scholar 

  11. Grumpe, A., Wöhler, C.: DEM construction and calibration of hyperspectral image data using pairs of radiance images. In: Proceedings of IEEE International Symposium on Image and Signal Processing and Analysis, Dubrovnik, Croatia, pp. 609–614 (2011)

    Google Scholar 

  12. Grumpe, A., Wöhler, C.: Image-based construction of lunar digital elevation models of very high lateral resolution. In: Proceedings of Lunar Planetary Science XXXXIII, abstract #2597. Lunar and Planetary Institute, Houston (2012)

    Google Scholar 

  13. Grumpe, A., Herbort, S., Wöhler, C.: 3D reconstruction of non-Lambertian surfaces with non-uniform reflectance parameters by fusion of photometrically estimated surface normal data with active range scanner data. In: Proceedings of Oldenburger 3D-Tage, Oldenburg, Germany, pp. 54–61 (2011)

    Google Scholar 

  14. Hapke, B.W.: Bidirectional reflectance spectroscopy 1: theory. J. Geophys. Res. 86, 3039–3054 (1981)

    Article  Google Scholar 

  15. Hapke, B.W.: Bidirectional reflectance spectroscopy 3: correction for macroscopic roughness. Icarus 59, 41–59 (1984)

    Article  Google Scholar 

  16. Hapke, B.W.: Bidirectional reflectance spectroscopy 4: the extinction coefficient and the opposition effect. Icarus 67, 264–280 (1986)

    Article  Google Scholar 

  17. Hapke, B.W.: Bidirectional reflectance spectroscopy 5: the coherent backscatter opposition effect and anisotropic scattering. Icarus 157, 523–534 (2002)

    Article  Google Scholar 

  18. Herbort, S., Grumpe, A., Wöhler, C.: Reconstruction of non-Lambertian surfaces by fusion of shape from shading and active range scanning. In: Proceedings of IEEE International Conferences on Image Processing, Brussels, Belgium, pp. 17–20 (2011)

    Google Scholar 

  19. Hicks, M.D., Buratti, B.J., Nettles, J., Staid, M., Sunshine, J., Pieters, C.M., Besse, S., Boardman, J.: A photometric function for analysis of lunar images in the visual and infrared based on Moon Mineralogy Mapper observations. J. Geophys. Res. 116, E00G15 (2011). doi:10.1029/2010JE003733

    Google Scholar 

  20. Horn, B.K.P.: Shape from shading: a method for obtaining the shape of a smooth opaque object from one view. MIT Technical Report 232, Massachusetts Institute of Technology (1970)

    Google Scholar 

  21. Horn, B.K.P.: Robot Vision. MIT Press, Cambridge, MA (1986)

    Google Scholar 

  22. Horn, B.K.P.: Height and gradient from shading. AI Memo 1105A, MIT AI Lab (1989)

    Google Scholar 

  23. Isaacson, P.: M3 overview and working with M3 data. M3 Data Tutorial at Lunar Planetary Science XXXXII. http://m3.jpl.nasa.gov/pubs/Isaacson_M3DataWorkshop_LPSC2011.pdf (2011)

  24. Jolliff, B.L.: Clementine UVVIS multispectral data and the Apollo 17 landing site: what can we tell and how well? J. Geophys. Res. 104(E6), 14123–14148 (1999)

    Article  Google Scholar 

  25. Joshi, N., Kriegman, D.J.: Shape from varying illumination and viewpoint. In: Proceedings of the International Conference on Computer Vision. IEEE, New York (2007)

    Google Scholar 

  26. Josset, J.-L., et al.: Science objectives and first results from the SMART-1/AMIE multicolour micro-camera. Adv. Space Res. 37, 14–20 (2006)

    Article  Google Scholar 

  27. Kieffer, H.H., Stone, T.C.: The spectral irradiance of the Moon. Astron. J. 129, 2887–2901 (2005)

    Article  Google Scholar 

  28. Kirk, R.L., Soderblom, L.A., Howington-Kraus, E., Archinal, B.: USGS high-resolution topomapping of Mars with Mars orbiter camera narrow-angle images. In: Proceedings of ISPRS Symposium on Geospatial Theory, Processing and Applications. International Society for Photogrammetry and Remote Sensing (2002)

    Google Scholar 

  29. Kozera, R.:. Existence and uniqueness in photometric stereo. Appl. Math. Comput. 44(1), 1–103 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  30. Le Mouélic, S., Lucey, P.G., Langevin, Y., Hawke, B.R.: Calculating iron contents of lunar highland materials surrounding Tycho crater from integrated Clementine UV-visible and near-infrared data. J. Geophys. Res. 107(E10), 5074 (2002). doi:10.1029/2000JE001484

    Article  Google Scholar 

  31. Li, R., Wang, W., He, S., Yan, L., Meng, X., Crawford, J., Robinson, M.S., Tran, T., Archinal, B.A., the LROC Team: Latest results of 3D topographic mapping using lunar reconnaissance orbiter narrow-angle camera data. In: Proceedings of Lunar Planetary Science XXXXII, abstract #2010. Lunar and Planetary Institute, Houston (2011)

    Google Scholar 

  32. Lim, J., Ho, J., Yang, M.-H., Kriegman, D.: Passive photometric stereo from motion. In: Proceedings of International Conference on Computer Vision, vol. 2, pp. 1635–1642. IEEE, New York (2005)

    Google Scholar 

  33. Lohse, V., Heipke, C., Kirk, R.L.: Derivation of planetary topography using multi-image shape-from-shading. Planet. Space Sci. 54, 661–674 (2006)

    Article  Google Scholar 

  34. Marsland, S.: Machine Learning: An Algorithmic Perspective. Chapman & Hall/CRC Machine Learning and Pattern Recognition Series. CRC, Boca Raton (2009)

    Google Scholar 

  35. Matsunaga, T., et al.: Discoveries on the lithology of lunar crater central peaks by SELENE Spectral Profiler. Geophys. Res. Lett. 35, L23201 (2008). doi:10.1029/2008GL035868

    Article  Google Scholar 

  36. Mattson, S., Ojha, A., Ortiz, A., McEwen, A.S., Burns, K.: Regional digital terrain model production with LROC-NAC. In: Proceedings Lunar Planetary Science XXXXIII, abstract #2630. Lunar and Planetary Institute, Houston (2012)

    Google Scholar 

  37. McCord, T.B., Taylor, L.A., Orlando, T.M., Pieters, C.M., Combe, J.-Ph., Kramer, G., Sunshine, J.M., Head, J.W., Mustard, J.F.: Origin of OH/Water on the lunar surface detected by the Moon Mineralogy Mapper. In: Proceedings of Lunar Planetary Science XXXXI, abstract #1860. Lunar and Planetary Institute, Houston (2010)

    Google Scholar 

  38. McEwen, A.S.: Photometric functions for photoclinometry and other applications. Icarus 92, 298–311 (1991)

    Article  Google Scholar 

  39. McEwen, A.S., Eliason, E., Lucey, P., Malaret, E., Pieters, C., Robinson, M., Sucharski, T.: Summary of radiometric calibration and photometric normalization steps for the Clementine UVVIS images. In: Proceedings Lunar Planetary Science XXIX, abstract #1466. Lunar and Planetary Institute, Houston (1998)

    Google Scholar 

  40. Nehab, D., Rusinkiewicz, S., Davis, J., Ramamoorthi, R.: Efficiently combining positions and normals for precise 3D geometry. ACM Trans. Graph. (Proc. SIGGRAPH) 24(3), 536–543 (2005)

    Google Scholar 

  41. Nettles, J.W., Besse, S., Boardman, J., Combe, J.-P., Clark, R., Dhingra, D., Isaacson, P., Klima, R., Kramer, G., Petro, N.E., Pieters, C.M., Staid, M., Taylor, L.A.: Progress toward a new lunar optical maturity measure based on Moon Mineralogy Mapper (M3) data. In: Proceedings of Lunar Planetary Science XXXXI, abstract #2217. Lunar and Planetary Institute, Houston (2010)

    Google Scholar 

  42. Pieters, C.M., et al.: The Moon Mineralogy Mapper (M3) on Chandrayaan-1. Curr. Sci. 96(4), 500–505 (2009)

    Google Scholar 

  43. Robinson, M.S., et al.: Lunar reconnaissance orbiter camera (LROC) instrument overview. Space Sci. Rev. 150, 81–124 (2010)

    Article  Google Scholar 

  44. Scholten, F., Oberst, J., Matz, K.-D., Roatsch, T., Wählisch, M., Robinson, M.S., the LROC Team: GLD100 – the global lunar 100 meter raster DTM from LROC WAC Stereo models. In: Proceedings of Lunar Planetary Science XXXXII, abstract #2046. Lunar and Planetary Institute, Houston (2011)

    Google Scholar 

  45. Schowengerdt, R.A.: Remote Sensing: Models and Methods for Image Processing. Academic Press, Burlington (2006)

    Google Scholar 

  46. Simakov, D., Frolova, D., Basri, R.: Dense shape reconstruction of a moving object under arbitrary, unknown lighting. In: Proceedings of International Conferences on Computer Vision, vol. 2, pp. 1202–1209. IEEE, New York (2003)

    Google Scholar 

  47. Simchony, T., Chellappa, R., Shao, M.: Direct analytical methods for solving poisson equations in computer vision problems. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 435–446 (1990)

    Article  Google Scholar 

  48. Smrekar, S., Pieters, C.M.: Near-infrared spectroscopy of probable impact melt from three large lunar highland craters. Icarus 63, 442–452 (1985)

    Article  Google Scholar 

  49. Tompkins, S., Pieters, C.M., Mustard, J.F., Pinet, P., Chevrel, S.D.: Distribution of materials excavated by the lunar crater Bullialdus and implications for the geologic history of the Nubium region. Icarus 110(2), 261–274 (1994)

    Article  Google Scholar 

  50. Vaniman, D., Reedy, R., Heiken, G., Olhoeft, G., Mendell, W.: The lunar environment. In: Heiken, G., Vaniman, D., French, B.M. (eds.) Lunar Sourcebook. Cambridge University Press, Cambridge, UK (1991)

    Google Scholar 

  51. Warell, J.: Properties of the Hermean regolith: IV. Photometric parameters of Mercury and the Moon contrasted with Hapke modelling. Icarus 167(2), 271–286 (2004)

    Google Scholar 

  52. Wilhelms, D.E.: A photometric technique for measurement of lunar slopes. In: Astrogeologic Studies, Annual Progress Report, Part D: Studies for Space Flight Program, USGS preliminary report, United States Geological Survey, pp. 1–12 (1964)

    Google Scholar 

  53. Wöhler, C., d’Angelo, P.: Stereo image analysis of non-Lambertian surfaces. Int. J. Comput. Vis. 81(2), 172–190 (2009)

    Google Scholar 

  54. Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19(1), 139–144 (1980)

    Article  Google Scholar 

  55. Zhang, L., Curless, B., Hertzmann, A., Seitz, S.M.: Shape and motion under varying illumination: unifying structure from motion, photometric stereo, and multi-view stereo. In: Proceedings of International Conference on Computer Vision, vol. 1, pp. 618–626. IEEE, New York (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Wöhler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wöhler, C., Grumpe, A. (2013). Integrated DEM Construction and Calibration of Hyperspectral Imagery: A Remote Sensing Perspective. In: Breuß, M., Bruckstein, A., Maragos, P. (eds) Innovations for Shape Analysis. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34141-0_21

Download citation

Publish with us

Policies and ethics