Skip to main content

Fluctuating Distance Fields, Parts, Three-Partite Skeletons

  • Chapter
  • First Online:
Innovations for Shape Analysis

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Shapes are continuous objects, even when they are drawn on digital media or composed using finite number of elements. As such, they defy analytic approach; explicitization of their parts, hierarchies, skeletons, or even centroids is ill-posed. I describe a novel approach to perceptually organize shapes and explicate their features without being negligent of their continuous nature. The basic construct is an unusual phase field that can be conceived in a number of varying ways using varying mathematical machinery, so highlighting the field itself rather than how it is being computed. Connections among the field, Mumford-Shah and Tari-Shah-Pien models, and reaction-diffusion equation suggest that the field may bridge low-level and high-level visual processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambrosio, L., Tortorelli, V.: On the approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Commun. Pure Appl. Math. 43(8), 999–1036 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aslan, C.: Disconnected skeletons for shape recognition. Master’s thesis, Department of Computer Engineering, Middle East Technical University (2005)

    Google Scholar 

  3. Aslan, C., Tari, S.: An axis-based representation for recognition. In: Proceedings of the ICCV, pp. 1339–1346. Springer, Berlin/New York (2005)

    Google Scholar 

  4. Aslan, C., Erdem, A., Erdem, E., Tari, S.: Disconnected skeleton: shape at its absolute scale. IEEE Trans. Pattern Anal. Mach. Intell. 30(12), 2188–2203 (2008)

    Article  Google Scholar 

  5. Bai, X., Latecki, L., Liu, W.Y.: Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Trans. Pattern Anal. Mach. Intell. 29, 449–462 (2007)

    Article  Google Scholar 

  6. Bar, L., Sochen, N., Kiryati, N.: Image deblurring in the presence of impulsive noise. Int. J. Comput. Vis. 70(3), 279–298 (2006)

    Article  Google Scholar 

  7. Barenholtz, E., Feldman, J.: Visual comparisons within and between object-parts: evidence for a single- part superiority effect. Vis. Res. 43, 1655–1666 (2003)

    Article  Google Scholar 

  8. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24, 509–522 (2002)

    Article  Google Scholar 

  9. Biederman, I.: Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94(2), 115–117 (1987)

    Article  Google Scholar 

  10. Blum, H.: Biological shape and visual science. J. Theor. Biol. 38, 205–287 (1973)

    Article  Google Scholar 

  11. Braides, A.: Approximation of Free-Discontinuity Problems. Lecture Notes in Mathematics, vol. 1694. Springer, Berlin/New York (1998)

    Google Scholar 

  12. Brockett, R., Maragos, P.: Evolution equations for continuous–scale morphology. In: Proceedings of the ICASSP, vol. 3, pp. 125–128. IEEE, Piscataway (1992)

    Google Scholar 

  13. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: Proceedings of the CVPR, pp. 60–65. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  14. Burbeck, C.A., Pizer, S.M.: Object representation by cores: identifying and representing primitive spatial regions. Vis. Res. 35, 1917–1930 (1995)

    Article  Google Scholar 

  15. Cohen, E.H., Singh, M.: Geometric determinants of shape segmentation: tests using segment identification. Vis. Res. 47, 2825–2840 (2007)

    Article  Google Scholar 

  16. de Winter, J., Wagemans, J.: Segmentation of object outlines into parts: a large-scale integrative study. Cognition 99, 275–325 (1999)

    Article  Google Scholar 

  17. Edelman, S., Cutzu, F., Duvdevani-Bar, S.: Similarity to reference shapes as a basis for shape representation. In: Proceedings of the COGSCI, San Diego (1996)

    Google Scholar 

  18. Erdem, E., Tari, S.: Mumford-Shah regularizer with contextual feedback. JMIV 33, 67–84 (2009)

    Article  MathSciNet  Google Scholar 

  19. Feldman, J., Singh, M.: Bayesian estimation of the shape skeleton. PNAS 103(47), 18014–18019 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Genctav, M.: Matching global skeleton. Master’s thesis, Department of Computer Engineering, Middle East Technical University (2010)

    Google Scholar 

  21. Gonzalez, R., Woods, R.: Digital Image Processing, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (2001)

    Google Scholar 

  22. Gorelick, L., Galun, M., Sharon, E., Basri, R., Brandt, A.: Shape representation and classification using the poisson equation. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 1991–2005 (2006)

    Article  Google Scholar 

  23. Hofmann, D., Richards, W.: Parts of recognition. Cognition 18, 65–96 (1984)

    Article  Google Scholar 

  24. Jung, M., Vese, L.: Nonlocal variational image deblurring models in the presence of gaussian or impulse noise. In: Proceedings of the SSVM, pp. 401–412. Springer, Berlin/New York (2009)

    Google Scholar 

  25. Kimia, B., Tannenbaum, A., Zucker, S.: Shapes, shocks, and deformations I: the components of two-dimensional shape and the reaction-diffusion space. Int. J. Comput. Vis. 15(3), 189–224 (1995)

    Article  Google Scholar 

  26. Leyton, M.: A process-grammar for shape. Art. Intell. 34(2), 213–247 (1988)

    Article  Google Scholar 

  27. Macrini, D., Dickinson, S., Fleet, D., Siddiqi, K.: Bone graphs: medial shape parsing and abstraction. Comput. Vis. Image Underst. 115, 1044–1061 (2011)

    Article  Google Scholar 

  28. Maragos, P., Butt, M.A.: Curve evolution, differential morphology and distance transforms as applied to multiscale and eikonal problems. Fundam. Inf. 41, 91–129 (2000)

    MathSciNet  MATH  Google Scholar 

  29. March, R., Dozio, M.: A variational method for the recovery of smooth boundaries. Image Vis. Comput. 15(9), 705–712 (1997)

    Article  Google Scholar 

  30. Marr, D.: Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W.H. Freeman, San Francisco (1982)

    Google Scholar 

  31. Meyer, F.: Topographic distance and watershed lines. Signal Process. 38, 113–125 (1994)

    Article  MATH  Google Scholar 

  32. Mi, X., DeCarlo, D.: Separating parts from 2d shapes using relatability. In: Proceedings of the ICCV, pp. 1–8. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  33. Morel, J.-M., Solimini, S.: Variational Methods in Image Segmentation. Birkhäuser, Boston (1995)

    Book  Google Scholar 

  34. Mumford, D.: Mathematical theories of shape: do they model perception? In: Proceedings of the SPIE, vol. 1570. SPIE, Bellingham (1991)

    Google Scholar 

  35. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  36. Navon, D.: Forest before trees: the precedence of global features in visual perception. Cogn. Psychol. 9, 355–383 (1977)

    Article  Google Scholar 

  37. Pasupathy, A., Connor, C.: Population coding of shape in area V4. Nat. Neurosci. 5(2), 1332–1338 (2002)

    Article  Google Scholar 

  38. Patz, T., Preusser, T.: Ambrosio-Tortorelli segmentation of stochastic images. In: Proceedings of the ECCV, pp. 254–267. Springer, Berlin (2010)

    Google Scholar 

  39. Pien, H.H., Desai, M., Shah, J.: Segmentation of mr images using curve evolution and prior information. IJPRAI 11(8), 1233–1245 (1997)

    Google Scholar 

  40. Preußer, T., Droske, M., Garbe, C., Rumpf, M., Telea, A.: A phase field method for joint denoising, edge detection and motion estimation. SIAM J. Appl. Math. 68(3), 599–618 (2007)

    Article  MathSciNet  Google Scholar 

  41. Proesman, M., Pauwels, E., van Gool, L.: Coupled geometry-driven diffusion equations for low-level vision. In: Romeny, B. (ed.) Geometry Driven Diffusion in Computer Vision. Lecture Notes in Computer Science. Kluwer, Dordrecht/Boston (1994)

    Google Scholar 

  42. Rosenfeld, A., Pfaltz, J.L.: Distance functions on digital pictures. Pattern Recognit. 1, 33–61 (1968)

    Article  MathSciNet  Google Scholar 

  43. Serra, J.: Image Analysis and Mathematical Morphology. London Academic, Orlando (1982)

    MATH  Google Scholar 

  44. Shah, J.: Segmentation by nonlinear diffusion. In: Proceedings of the CVPR, pp. 202–207. IEEE Computer Society, Los Alamitos (1991)

    Google Scholar 

  45. Shah, J.: A common framework for curve evolution, segmentation and anisotropic diffusion. In: Proceedings of the CVPR, pp. 136–142 (1996)

    Google Scholar 

  46. Shah, J.: Riemannian drums, anisotropic curve evolution and segmentation. In: Proceedings of the Scale-Space, pp. 129–140. Springer, Berlin/New York (1999)

    Google Scholar 

  47. Shah, J.: Skeletons and segmentation of shapes. Technical report, Northeastern University. http://www.math.neu.edu/~shah/publications.html (2005)

  48. Shah, J., Pien, H.H., Gauch, J.: Recovery of shapes of surfaces with discontinuities by fusion of shading and range data within a variational framework. IEEE Trans. Image Process. 5(8), 1243–1251 (1996)

    Article  Google Scholar 

  49. Siddiqi, K., Tresness, K.J., Kimia, B.: Parts of visual form: ecological and psychophysical aspects. Perception 25, 399–424 (1996)

    Article  Google Scholar 

  50. Stiny, G.: Shape: Talking about Seeing and Doing. MIT, Cambridge (2006)

    Google Scholar 

  51. Tari, S., Genctav, M.: From a modified Ambrosio-Tortorelli to a randomized part hierarchy tree. In: Bruckstein, A.M., ter Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) Scale Space and Variational Methods. Lecture Notes in Computer Science, vol. 6667, pp. 267–278. Springer, Berlin/Heidelberg (2011)

    Chapter  Google Scholar 

  52. Tari, S., Shah, J.: Simultaneous segmentation of images and shapes. In: Proceedings of the SPIE, San Diego, vol. 3168, San Diego pp. 88–94 (1997)

    Google Scholar 

  53. Tari, S., Shah, J.: Local symmetries of shapes in arbitrary dimension. In: Proceedings of the ICCV, pp. 1123–1128. Narosa, New Delhi (1998)

    Google Scholar 

  54. Tari, S., Shah, J., Pien, H.: A computationally efficient shape analysis via level sets. In: Proceedings of the MMBIA, pp. 234–243. IEEE Computer Society, Los Alamitos (1996)

    Google Scholar 

  55. Tari, S., Shah, J., Pien, H.: Extraction of shape skeletons from grayscale images. CVIU 66(2), 133–146 (1997)

    Google Scholar 

  56. Teboul, S., Blanc-Féraud, L., Aubert, G., Barlaud, M.: Variational approach for edge preserving regularization using coupled PDE’s. IEEE Trans. Image. Process. 7, 387–397 (1998)

    Article  Google Scholar 

  57. Xu, C., Liu, J., Tang, X.: 2d shape matching by contour flexibility. IEEE Trans. Pattern Anal. Mach. Intell. 31(1), 180–186 (2009)

    Article  Google Scholar 

  58. Zeng, J.T., Lakaemper, R., Wei, X., Li, X.: 2d shape decomposition based on combined skeleton-boundary features. In: Proceedings of the Advances in Visual Computing, 4th International Symposium, ISVC, pp. 682–691. Springer, Berlin/New York (2008)

    Google Scholar 

Download references

Acknowledgements

The author thanks to the Alexander von Humboldt Foundation for a generous financial support and extends her gratitude to Folkmar Bornemann, Sci. Comp. Dept. of Tech. Universität München for providing a wonderful sabbatical stay during which this work has been completed. She also thanks to anonymous reviewers and the editors, A. Bruckstein, M. Breuß and P. Maragos, for their meticulous editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sibel Tari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tari, S. (2013). Fluctuating Distance Fields, Parts, Three-Partite Skeletons. In: Breuß, M., Bruckstein, A., Maragos, P. (eds) Innovations for Shape Analysis. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34141-0_20

Download citation

Publish with us

Policies and ethics