Skip to main content

Geodesic Regression and Its Application to Shape Analysis

  • Chapter
  • First Online:
Innovations for Shape Analysis

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

In this chapter, I present a regression method for modeling the relationship between a manifold-valued random variable and a real-valued independent parameter. The principle is to fit a geodesic curve, parameterized by the independent parameter, that best fits the data. Error in the model is evaluated as the sum-of-squared geodesic distances from the model to the data, and this provides an intrinsic least squares criterion. Geodesic regression is, in some sense, the simplest parametric model that one could choose, and it provides a direct generalization of linear regression to the manifold setting. A generalization of the coefficient of determination and a resulting hypothesis test for determining the significance of the estimated trend is developed. Also, a diagnostic test for the quality of the fit of the estimated geodesic is demonstrated. While the method can be generally applied to data on any manifold, specific examples are given for a set of synthetically generated rotation data and an application to analyzing shape changes in the corpus callosum due to age.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bookstein, F.L.: Size and shape spaces for landmark data in two dimensions (with discussion). Stat. Sci. 1(2), 181–242 (1986)

    Article  MATH  Google Scholar 

  2. Davis, B., Fletcher, P.T., Bullitt, E., Joshi, S.: Population shape regression from random design data. In: Proceedings of IEEE International Conference on Computer Vision (2007)

    Google Scholar 

  3. do Carmo, M.: Riemannian Geometry. Birkhäuser, Boston (1992)

    Google Scholar 

  4. Driesen, N., Raz, N.: The influence of sex, age, and handedness on corpus callosum morphology: a meta-analysis. Psychobiology 23(3), 240–247 (1995)

    Google Scholar 

  5. Dryden, I., Mardia, K.: Statistical Shape Analysis. Wiley, Chichester (1998)

    MATH  Google Scholar 

  6. Durrleman, S., Pennec, X., Trouvé, A., Gerig, G., Ayache, N.: Spatiotemporal atlas estimation for developmental delay detection in longitudinal datasets. In: Medical Image Computing and Computer-Assisted Intervention, pp. 297–304 (2009)

    Google Scholar 

  7. Fletcher, P.T.: Geodesic regression on Riemannian manifolds. In: MICCAI Workshop on Mathematical Foundations of Computational Anatomy, pp. 75–86 (2011)

    Google Scholar 

  8. Fletcher, P.T., Lu, C., Joshi, S.: Statistics of shape via principal geodesic analysis on Lie groups. In: IEEE CVPR, pp. 95–101 (2003)

    Google Scholar 

  9. Fox, J.: Applied Regression Analysis, Linear Models, and Related Methods. Sage, Thousand Oaks (1997)

    Google Scholar 

  10. Fréchet, M.: Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. H. Poincaré 10(3), 215–310 (1948)

    Google Scholar 

  11. Jupp, P.E., Kent, J.T.: Fitting smooth paths to spherical data. Appl. Stat. 36(1), 34–46 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30, 509–541 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kendall, D.G.: Shape manifolds, Procrustean metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16, 18–121 (1984)

    Google Scholar 

  14. Kendall, W.S.: Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence. Proc. Lond. Math. Soc. 3(61), 371–406 (1990)

    Article  MathSciNet  Google Scholar 

  15. Klassen, E., Srivastava, A., Mio, W., Joshi, S.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE PAMI 26(3), 372–383 (2004)

    Article  Google Scholar 

  16. Mardia, K.V.: Directional Statistics. Wiley, Chichester (1999)

    Book  Google Scholar 

  17. Michor, P.W., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. 8, 1–48 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Miller, M.: Computational anatomy: shape, growth, and atrophy comparison via diffeomorphisms. NeuroImage 23, S19–S33 (2004)

    Article  Google Scholar 

  19. Nadaraya, E.A.: On estimating regression. Theory Probab. Appl. 10, 186–190 (1964)

    Article  Google Scholar 

  20. Niethammer, M., Huang, Y., Viallard, F.-X.: Geodesic regression for image time-series. In: Proceedings of Medical Image Computing and Computer Assisted Intervention (2011)

    Google Scholar 

  21. Pennec, X.: Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements. J. Math. Imaging Vis. 25(1), 127–154 (2006)

    Article  MathSciNet  Google Scholar 

  22. Shi, X., Styner, M., Lieberman, J., Ibrahim, J., Lin, W., Zhu, H.: Intrinsic regression models for manifold-valued data. J. Am. Stat. Assoc. 5762, 192–199 (2009)

    Google Scholar 

  23. Trouvé, A., Vialard, F.-X.: A second-order model for time-dependent data interpolation: splines on shape spaces. In: MICCAI STIA Workshop (2010)

    Google Scholar 

  24. Wand, M.P., Jones, M.C.: Kernel Smoothing. Number 60 in Monographs on Statistics and Applied Probabilitiy. Chapman & Hall/CRC, London/New York (1995)

    Google Scholar 

  25. Watson, G.S.: Smooth regression analysis. Sankhya 26, 101–116 (1964)

    MATH  Google Scholar 

  26. Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58, 565–586 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Younes, L.: Jacobi fields in groups of diffeomorphisms and applications. Q. Appl. Math. 65, 113–113 (2006)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Thomas Fletcher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fletcher, P.T. (2013). Geodesic Regression and Its Application to Shape Analysis. In: Breuß, M., Bruckstein, A., Maragos, P. (eds) Innovations for Shape Analysis. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34141-0_2

Download citation

Publish with us

Policies and ethics