Skip to main content

Explorational Rock Physics: The Link between Geological Processes and Geophysical Observables

  • Chapter

Abstract

The field of rock physics represents the link between qualitative geologic parameters and quantitative geophysical measurements. Increasingly over the last decade, rock physics has become an integral part of quantitative seismic interpretation and stands out as a key technology in petroleum geophysics. Ultimately, the application of rock physics tools can reduce exploration risk and improve reservoir forecasting in the petroleum industry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Further Reading

  • Aki, K. and Richards, P.G. 1980. Quantitative Seismology: Theory and Methods. San Francisco: W.H. Freeman, 948 pp.

    Google Scholar 

  • Anselmetti, F. and Eberli, G.P. 1997. Sonic velocity in carbonate sediments and rocks. In: Palaz, I. and Marfurt, K.J. (eds.), Carbonate Seismology. Society of Exploration Geophysicists, Houston, TX, pp. 53–73.

    Chapter  Google Scholar 

  • Avseth, P. 2000. Combining rock physics and sedimentology for seismic reservoir characterization of North Sea turbidite systems. Ph.D. thesis, Stanford University, 200 pp.

    Google Scholar 

  • Avseth, P., Dræge, A., van Wijngaarden, A.-J., Johansen, T.A. and Jørstad, A. 2008. Shale rock physics and implications for AVO analysis: A North Sea demonstration. The Leading Edge 27, 788–797.

    Article  Google Scholar 

  • Avseth, P., Dvorkin, J., Mavko, G. and Rykkje, J. 2000. Rock physics diagnostic of North Sea sands: Link between microstructure and seismic properties. Geophysical Research Letters 27, 2761–2764.

    Article  Google Scholar 

  • Avseth, P., Flesche, H. and van Wijngaarden, A.-J. 2003. AVO classification of lithology and pore fluids constrained by rock physics depth trends. The Leading Edge 22(10), 1004–1011.

    Article  Google Scholar 

  • Avseth, P., Johansen, T.A., Bakhorji, A. and Mustafa, H.M. 2014. Rock physics modeling guided by depositional and burial history in low-to-intermediate-porosity sandstones. Geophysics 79, D115–D122.

    Article  Google Scholar 

  • Avseth, P., Jørstad, A., van Wijngaarden, A.-J. and Mavko, G. 2009. Rock physics estimation of cement volume, sorting and net-to-gross in North Sea sandstones. The Leading Edge 28, 98–108.

    Article  Google Scholar 

  • Avseth, P., Mukerji, T., Jørstad, T., Mavko, G. and Veggeland, T. 2001a. Seismic reservoir mapping from 3-D AVO in a North Sea turbidite system. Geophysics 66, 1157–1176.

    Article  Google Scholar 

  • Avseth, P., Mukerji, T. and Mavko, G. 2005. Quantitative Seismic Interpretation – Applying Rock Physics Tools to Reduce Interpretation Risk. Cambridge University Press, Cambridge, 376 pp.

    Book  Google Scholar 

  • Avseth, P., Mukerji, T., Mavko, G. and Dvorkin, J. 2010. Rock physics diagnostics of depositional texture, diagenetic alterations and reservoir heterogeneity in high porosity siliciclastic sediments and rocks - A review of selected models and suggested workflows. Geophysics 75, A31–A47.

    Article  Google Scholar 

  • Avseth, P., Mukerji, T., Mavko, G. and Tyssekvam, J.A. 2001b. Rock physics and AVO analysis for lithofacies and pore fluid prediction in a North Sea oil field. The Leading Edge 20, 429.

    Article  Google Scholar 

  • Batzle, M. and Wang, Z. 1992. Seismic properties of pore fluids. Geophysics 57, 1396–1408.

    Article  Google Scholar 

  • Bjørlykke, K. 1998. Clay mineral diagenesis in sedimentary basins – A key to the prediction of rock properties; Examples from the North Sea Basin. Clay Minerals 33, 15–34.

    Article  Google Scholar 

  • Bjørlykke, K. and Egeberg, P.K. 1993. Quartz cementation in sedimentary basins. AAPG Bulletin 77, 1538–1548.

    Google Scholar 

  • Box, G.E.P. and Draper, N.R. 1987. Empirical Model Building and Response Surfaces. New York, NY: John Wiley and Sons, 669 pp.

    Google Scholar 

  • Brevik, I., Ahmadi, G.R., Hatteland, T. and Rojas, M.A. 2007. Documentation and quantification of velocity anisotropy in shales using wireline log measurements. The Leading Edge 26(3), 272–277.

    Article  Google Scholar 

  • Castagna, J.P., Batzle, M.L. and Eastwood, R.O. 1985. Relationships between compressional-wave and shear-wave velocities in clastic silicate rocks. Geophysics 50, 571–581.

    Article  Google Scholar 

  • Castagna, J.P. and Swan, H.W. 1997. Principles of AVO crossplotting. The Leading Edge 16, 337–342.

    Article  Google Scholar 

  • Domenico, S.N. 1976. Effect of brine-gas mixture on velocity in an unconsolidated sand reservoir. Geophysics 41, 882–894.

    Article  Google Scholar 

  • Dræge, A. 2009. Constrained rock physics modeling. The Leading Edge 28, 76–80.

    Article  Google Scholar 

  • Dræge, A., Jakobsen, M. and Johansen, T.A. 2006. Rock physics modeling of shale diagenesis. Petroleum Geoscience 12(1), 49–57.

    Article  Google Scholar 

  • Dvorkin, J. and Gutierrez, M. 2002. Grain sorting, porosity and elasticity. Petrophysics 43, 185–196.

    Google Scholar 

  • Dvorkin, J., Mavko, G. and Gurevich, B. 2007. Fluid substitution in shaley sediment using effective porosity. Geophysics 72, O1–O8.

    Article  Google Scholar 

  • Dvorkin, J. and Nur, A. 1996. Elasticity of high-porosity sandstones: Theory for two North Sea datasets. Geophysics 61, 1363–1370.

    Article  Google Scholar 

  • Fatti, J.L., Smith, G.C., Vail, P.J., Strauss, P.J. and Levitt, P.R. 1994. Detection of gas in sandstone reservoirs using AVO analysis: A 3-D seismic case history using the Geostack technique. Geophysics 59, 1362–1376.

    Article  Google Scholar 

  • Gassmann, F. 1951. Uber die elastizitat poroser medien. Vier der Natur Gesellschaft 96, 1–23.

    Google Scholar 

  • Giles, M.R., Indrelid, S.L., Beynon, G.V. and Amthor, J. 2000. The origin of large-scale quartz cementation: Evidence from large data sets and coupled heat-fluid mass transport modeling. In: Worden, R.H. and Morad, S (eds.), Quartz Cementation in Sandstones. International Association of Sedimentologists Special Publication 29, Blackwell, Oxford, pp. 21–38.

    Chapter  Google Scholar 

  • Golikov, P., Avseth, P., Stovas, A. and Bachrach, R. 2013. Rock physics interpretation of heterogeneous and anisotropic turbidite reservoirs. Geophysical Prospecting 61, 448–457.

    Article  Google Scholar 

  • Hamilton, E.L. 1956. Low sound velocities in high porosity sediments. Journal of the Acoustical Society of America 28, 16–19.

    Article  Google Scholar 

  • Han, D. 1986. Effects of porosity and clay content on acoustic properties of sandstones and unconsolidated sediments. Unpublished Ph.D. dissertation, Stanford University.

    Google Scholar 

  • Hashin, Z. and Shtrikman, S. 1963. A variational approach to the elastic behavior of multiphase materials. Journal of the Mechanics and Physics of Solids 11, 127–140.

    Article  Google Scholar 

  • Hornby, B.E., Schwartz, L.M. and Hudson, J.A. 1994. Anisotropic effective-medium modeling of the elastic properties of shales. Geophysics 59, 1570–1583.

    Article  Google Scholar 

  • Johansen, T.A., Jakobsen, M. and Ruud, B.O. 2002. Estimation of the internal structure and anisotropy of shales from borehole data. Journal of Seismic Exploration 11, 363–381.

    Google Scholar 

  • Kim, K.Y., Wrolstad, K.H. and Aminzadeh, F. 1993. Effects of transverse isotropy on P-wave AVO for gas sands. Geophysics 58, 883–888.

    Article  Google Scholar 

  • Lehocki, I.L. and Avseth, P. 2010. Rock physics quantification of diagenetic cement (EAGE Extended Abstract P244). In 72nd EAGE Conference and Exhibition, Barcelona.

    Google Scholar 

  • Lehocki, I.L., Avseth, P., Buran, H. and Jørstad, A. 2012. Statistical AVO classification in areas with diagenesis and tectonic uplift - case examples from the Barents Sea (EAGE Extended Abstract C007). In 74th EAGE Conference and Exhibition, Copenhagen.

    Google Scholar 

  • MacQuaker, J.H.S., Taylor, K.G. and Gawthorpe, R.L. 2007. High-resolution facies analysis of mudstones: Implications for paleoenvironment and sequence stratigraphic interpretations of offshore ancient mud-dominated successions. Journal of Sedimentary Research 77, 324–339.

    Article  Google Scholar 

  • Marcussen, Ø., Thyberg, B.I., Peltonen, C., Jahren, J., Bjørlykke, K. and Faleide, J.I. 2009. Physical properties of Cenozoic mudstones from the northern North Sea: Impact of clay mineralogy on compaction trends. AAPG Bulletin 93, 127–150.

    Article  Google Scholar 

  • Marion, D. 1990. Acoustical, mechanical and transport properties of sediments and granular materials. Ph.D. thesis, Stanford University.

    Google Scholar 

  • Mavko, G., Mukerji, T. and Dvorkin, J. 2009. The Rock Physics Handbook. Cambridge: Cambridge University Press, 511 pp.

    Book  Google Scholar 

  • Middleton, G.V. 1973. Johannes Walther’s law of the correlation of facies. Geological Society of America Bulletin 84, 979–988.

    Article  Google Scholar 

  • Mindlin, R.D. 1949. Compliance of elastic bodies in contact. Journal of Applied Mechanics 16, 259–268.

    Google Scholar 

  • Mondol, N.H., Bjørlykke, K., Jahren, J. and Høeg, K. 2007. Experimental mechanical compaction of clay mineral aggregates – Changes in physical properties of mudstones during burial. Marine and Petroleum Geology 24(5), 289–311.

    Article  Google Scholar 

  • Mukerji, T., Jørstad, A., Avseth, P., Mavko, G. and Granli, J.R. 2001. Mapping lithofacies and pore-fluid probabilities in a North Sea reservoir: Seismic inversions and statistical rock physics. Geophysics 66(4), 988–1001.

    Article  Google Scholar 

  • Ødegaard, E. and Avseth, P. 2004. Well log and seismic data analysis using rock physics templates. First Break 22, 37–43.

    Google Scholar 

  • Ostrander, W.J. 1984. Plane-wave reflection coefficients for gas sands at non-normal angles of incidence. Geophysics 49, 1637–1648.

    Article  Google Scholar 

  • Peltonen, C., Marcussen, Ø., Bjørlykke, K. and Jahren, J. 2008. Clay mineral diagenesis and quartz cementation in mudstones: The effects of smectite to illite transformation on rock properties. Marine and Petroleum Geology 26(6), 887–898.

    Article  Google Scholar 

  • Raiga-Clemenceau, J., Martin, J.P. and Nicoletis, S. 1988. The concept of acoustic formation factor for more accurate porosity determination from sonic transit time data. Log Analyst 219, 54–60.

    Google Scholar 

  • Ramm, M. and Bjørlykke, K. 1994. Porosity/depth trends in reservoir sandstones: assessing the quantitative effects of varying pore-pressure, temperature history and mineralogy, Norwegian Shelf data. Clay Minerals 29, 475–490.

    Article  Google Scholar 

  • Raymer, L.L., Hunt, E.R. and Gardner, J.S. 1980 (July). An improved sonic transit time-to-porosity transform. Paper presented in 21st Annual Logging Symposium. Society of Professional Well Log Analysis (SPWLA), Lafayette, Louisiana.

    Google Scholar 

  • Reading, H.G. and Richards, M. 1994. Turbidite systems in deep-water basin margins classified by grain-size and feeder system. AAPG Bulletin 78, 792–822.

    Google Scholar 

  • Reuss, A. 1929. Berechnung der fliessgrenzen von mischkristallen. Zeitschrift fur Angewandte Mathematik und Mechanik 9, 49–58.

    Article  Google Scholar 

  • Ross, C.P. and Kinman, D.L. 1995. Non-bright spot AVO: Two examples. Geophysics 60, 1398–1408.

    Article  Google Scholar 

  • Rutherford, S.R. and Williams, R.H. 1989. Amplitude-versus-offset variations in gas sands. Geophysics 54, 680–688.

    Article  Google Scholar 

  • Ruud, B.O., Jakobsen, M. and Johansen, T.A. 2003. Seismic properties of shales during compaction (SEG Extended Abstract). In SEG Annual Meeting, Dallas, TX. 4 pp.

    Google Scholar 

  • Sams, M. and Andrea, M. 2001. The effect of clay distribution on the elastic properties of sandstones. Geophysical Prospecting 49, 128–150.

    Article  Google Scholar 

  • Shuey, R.T. 1985. A simplification of the Zoeppritz equations. Geophysics 50(4), 609–614.

    Article  Google Scholar 

  • Smith, G.C. and Gidlow, P.M. 1987. Weighted stacking for rock property estimation and detection of gas. Geophysical Prospecting 35, 993–1014.

    Article  Google Scholar 

  • Storvoll, V., Bjørlykke, K. and Mondol, N.H. 2005. Velocity-depth trends in Mesozoic and Cenozoic sediments from the Norwegian Shelf. AAPG Bulletin 89(3), 359–381.

    Article  Google Scholar 

  • Thomsen, L. 1986. Weak elastic anisotropy. Geophysics 51, 1954–1966.

    Article  Google Scholar 

  • Thyberg, B., Jahren, J., Winje, T., Bjørlykke, K. and Faleide, J.I. 2009. From mud to shale: rock stiffening by micro-quartz cementation. First Break 27, 53–59.

    Article  Google Scholar 

  • Timoshenko, S.P. and Goodier, J.N. 1934. Theory of Elasticity. New York: McGraw-Hill, 416 pp.

    Google Scholar 

  • Vernik, L. and Nur, A. 1992. Petrophysical classification of siliciclastics for lithology and porosity prediction from seismic velocities. AAPG Bulletin 76, 1295–1309.

    Google Scholar 

  • Voigt, W. 1910. Lehrbuch der Kristallphysik. Leipzig: Teubner.

    Google Scholar 

  • Walderhaug, O., Lander, R.H., Bjørkum, P.A., Oelkers, E.H., Bjørlykke, K. and Nadeau, P.H. 2000. Modelling quartz cementation and porosity in reservoir sandstones: examples from the Norwegian continental shelf. In: Worden, R.H. and Morad, S. (eds.), Quartz Cementation in Sandstones. International Association of Sedimentologists Special Publication 29, Blackwell, Oxford, pp. 39–50.

    Google Scholar 

  • Walker, R. 1978. Deep-water sandstone facies and ancient sub-marine fans: Models for exploration for stratigraphic traps. AAPG Bulletin 62, 932–966.

    Google Scholar 

  • Worden, R.H. and Morad, S. 2000. Quartz cementation in oil field sandstones: A review of the key controversies. In: Worden, R.H. and Morad, S. (eds.), Quartz Cementation in Sandstones. International Association of Sedimentologists Special Publication 29, Blackwell, Oxford, pp. 1–20.

    Chapter  Google Scholar 

  • Wyllie, M.J., Gregory, A.R. and Gardner, L.W. 1956. Elastic wave velocities in heterogeneous and porous media. Geophysics 21, 41–70.

    Article  Google Scholar 

  • Xu, S. and White, R.E. 1995. A new velocity model for clay-sand mixtures. Geophysical Prospecting 43, 91–118.

    Article  Google Scholar 

  • Yin, H. 1992. Acoustic velocity and attenuation of rocks, isotropy intrinsic anisotropy, and stress induced anisotropy. Ph.D. thesis, Stanford University.

    Google Scholar 

  • Zoeppritz, K. 1919. Erdbebenwellen VIIIB, Ueber Reflexion and Durchgang seismischer Wellen durch Unstetigkeitsflaechen. Goettinger Nachrichten I, 66–84.

    Google Scholar 

Download references

Acknowledgements

Thanks to Prof. Gary Mavko and Prof. Tapan Mukerji at Stanford University for collaboration over a long period and contributions to the work presented here. Thanks to Arild Jørstad and Hans Oddvar Augedal at Lundin-Norway for geological input to the Palaeocene sands studied in this chapter; also thanks to Aart-Jan van Wijngaarden, Erik Ødegaard, Torbjørn Fristad, and Anders Dræge at Statoil for fruitful discussions and input to the work included in this chapter. I also acknowledge Prof. Ran Bachrach at Tel Aviv University, and Prof. Tor Arne Johannesen at University of Bergen, for valuable discussions. Finally, I would like to thank Ivan Lehocki at Lehocki Geospace and Håvard Buran at Lundin-Norway for contributions to the AVO case study in the Barents Sea, and to Tor Veggeland at Tullow Oil Norge for valuable input on the Glitne case study presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Avseth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Internation Publishing

About this chapter

Cite this chapter

Avseth, P. (2015). Explorational Rock Physics: The Link between Geological Processes and Geophysical Observables. In: Bjørlykke, K. (eds) Petroleum Geoscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34132-8_18

Download citation

Publish with us

Policies and ethics