Advertisement

Cascading Discriminant and Generative Models for Protein Secondary Structure Prediction

  • Fabienne Thomarat
  • Fabien Lauer
  • Yann Guermeur
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7632)

Abstract

Most of the state-of-the-art methods for protein seconday structure prediction are complex combinations of discriminant models. They apply a local approach of the prediction which is known to induce a limit on the expected prediction accuracy. A priori, the use of generative models should make it possible to overcome this limitation. However, among the numerous hidden Markov models which have been dedicated to this task over more than two decades, none has come close to providing comparable performance. A major reason for this phenomenon is provided by the nature of the relevant information. Indeed, it is well known that irrespective of the model implemented, the prediction should benefit significantly from the availability of evolutionary information. Currently, this knowledge is embedded in position-specific scoring matrices which cannot be processed easily with hidden Markov models. With this observation at hand, the next significant advance should come from making the best of the two approaches, i.e., using a generative model on top of discriminant models. This article introduces the first hybrid architecture of this kind with state-of-the-art performance. The conjunction of the two levels of treatment makes it possible to optimize the recognition rate both at the residue level and at the segment level.

Keywords

protein secondary structure prediction discriminant models class membership probabilities hidden Markov models 

References

  1. 1.
    Qian, N., Sejnowski, T.J.: Predicting the secondary structure of globular proteins using neural network models. Journal of Molecular Biology 202, 865–884 (1988)CrossRefGoogle Scholar
  2. 2.
    Pollastri, G., Przybylski, D., Rost, B., Baldi, P.: Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins 47, 228–235 (2002)CrossRefGoogle Scholar
  3. 3.
    Cole, C., Barber, J.D., Barton, G.J.: The Jpred 3 secondary structure prediction server. Nucleic Acids Research 36, W197–W201 (2008)Google Scholar
  4. 4.
    Kountouris, P., Hirst, J.D.: Prediction of backbone dihedral angles and protein secondary structure using support vector machines. BMC Bioinformatics 10, 437 (2009)CrossRefGoogle Scholar
  5. 5.
    Aydin, Z., Singh, A., Bilmes, J., Noble, W.S.: Learning sparse models for a dynamic Bayesian network classifier of protein secondary structure. BMC Bioinformatics 12, 154 (2011)CrossRefGoogle Scholar
  6. 6.
    Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77, 257–286 (1989)CrossRefGoogle Scholar
  7. 7.
    Asai, K., Hayamizu, S., Handa, K.: Prediction of protein secondary structure by the hidden Markov model. CABIOS 9, 141–146 (1993)Google Scholar
  8. 8.
    Martin, J., Gibrat, J.-F., Rodolphe, F.: Analysis of an optimal hidden Markov model for secondary structure prediction. BMC Structural Biology 6, 25 (2006)CrossRefGoogle Scholar
  9. 9.
    Won, K.-J., Hamelryck, T., Prügel-Bennett, A., Krogh, A.: An evolutionary method for learning HMM structure: prediction of protein secondary structure. BMC Bioinformatics 8, 357 (2007)CrossRefGoogle Scholar
  10. 10.
    Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25, 3389–3402 (1997)CrossRefGoogle Scholar
  11. 11.
    Yao, X.-Q., Zhu, H., She, Z.-S.: A dynamic Bayesian network approach to protein secondary structure prediction. BMC Bioinformatics 9, 49 (2008)CrossRefGoogle Scholar
  12. 12.
    Krogh, A., Riis, S.K.: Hidden neural networks. Neural Computation 11, 541–563 (1999)CrossRefGoogle Scholar
  13. 13.
    Guermeur, Y.: Combining discriminant models with new multi-class SVMs. Pattern Analysis and Applications 5, 168–179 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Guermeur, Y., Pollastri, G., Elisseeff, A., Zelus, D., Paugam-Moisy, H., Baldi, P.: Combining protein secondary structure prediction models with ensemble methods of optimal complexity. Neurocomputing 56, 305–327 (2004)CrossRefGoogle Scholar
  15. 15.
    Lin, K., Simossis, V.A., Taylor, W.R., Heringa, J.: A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics 21, 152–159 (2005)CrossRefGoogle Scholar
  16. 16.
    Guermeur, Y., Thomarat, F.: Estimating the Class Posterior Probabilities in Protein Secondary Structure Prediction. In: Loog, M., Wessels, L., Reinders, M.J.T., de Ridder, D. (eds.) PRIB 2011. LNCS (LNBI), vol. 7036, pp. 260–271. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Bonidal, R., Thomarat, F., Guermeur, Y.: Estimating the class posterior probabilities in biological sequence segmentation. In: SMTDA 2012 (2012)Google Scholar
  18. 18.
    Ramesh, P., Wilpon, J.G.: Modeling state durations in hidden Markov models for automatic speech recognition. In: ICASSP 1992, pp. 381–384 (1992)Google Scholar
  19. 19.
    Guermeur, Y.: A generic model of multi-class support vector machine. International Journal of Intelligent Information and Database Systems (in press, 2012)Google Scholar
  20. 20.
    Baldi, P., Brunak, S., Frasconi, P., Soda, G., Pollastri, G.: Exploiting the past and the future in protein secondary structure prediction. Bioinformatics 15, 937–946 (1999)CrossRefGoogle Scholar
  21. 21.
    Chen, J., Chaudhari, N.S.: Cascaded bidirectional recurrent neural networks for protein secondary structure prediction. IEEE/ACM Transactions on Computational Biology and Bioinfomatics 4, 572–582 (2007)CrossRefGoogle Scholar
  22. 22.
    Hosmer, D.W., Lemeshow, S.: Applied Logistic Regression. Wiley, London (1989)Google Scholar
  23. 23.
    Guermeur, Y.: Combining multi-class SVMs with linear ensemble methods that estimate the class posterior probabilities. Communications in Statistics (submitted)Google Scholar
  24. 24.
    Anthony, M., Bartlett, P.L.: Neural Network Learning: Theoretical Foundations. Cambridge University Press, Cambridge (1999)CrossRefzbMATHGoogle Scholar
  25. 25.
    Guermeur, Y.: VC theory of large margin multi-category classifiers. Journal of Machine Learning Research 8, 2551–2594 (2007)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Cuff, J.A., Barton, G.J.: Evaluation and improvement of multiple sequence methods for protein secondary structure prediction. Proteins 34, 508–519 (1999)CrossRefGoogle Scholar
  27. 27.
    Jones, D.T., Swindells, M.B.: Getting the most from PSI-BLAST. Trends in Biochemical Sciences 27, 161–164 (2002)CrossRefGoogle Scholar
  28. 28.
    Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577–2637 (1983)CrossRefGoogle Scholar
  29. 29.
    Weston, J., Watkins, C.: Multi-class support vector machines. Technical Report CSD-TR-98-04, Royal Holloway, University of London, Department of Computer Science (1998)Google Scholar
  30. 30.
    Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research 2, 265–292 (2001)Google Scholar
  31. 31.
    Lee, Y., Lin, Y., Wahba, G.: Multicategory support vector machines: Theory and application to the classification of microarray data and satellite radiance data. Journal of the American Statistical Association 99, 67–81 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Guermeur, Y., Monfrini, E.: A quadratic loss multi-class SVM for which a radius-margin bound applies. Informatica 22, 73–96 (2011)MathSciNetGoogle Scholar
  33. 33.
    Lauer, F., Guermeur, Y.: MSVMpack: a multi-class support vector machine package. Journal of Machine Learning Research 12, 2293–2296 (2011)MathSciNetGoogle Scholar
  34. 34.
    Baldi, P., Brunak, S., Chauvin, Y., Andersen, C.A.F., Nielsen, H.: Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16, 412–424 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fabienne Thomarat
    • 1
  • Fabien Lauer
    • 1
  • Yann Guermeur
    • 1
  1. 1.LORIA – CNRS, INRIA, Université de Lorraine, Campus ScientifiqueVandœuvre-lès-Nancy CedexFrance

Personalised recommendations