Principal Component Analysis for Bacterial Proteomic Analysis

  • Y. -h. Taguchi
  • Akira Okamoto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7632)


Proteomic analysis is a very useful procedure to understand the bacterial behavioural responses to the external environmental factors. This is because bacterial genome information is mainly devoted to code enzyme for the control of the cellular metabolic networks. In this paper, we have performed proteomic analysis of Streptococcus pyogenes, which is known to be flesh-eating bacteria and can cause several human life-threatening diseases. Its proteome during growth phase is measured for four time points under two different culture conditions; with or without shaking. Its purpose is to understand the adaptivity to oxidative stresses. Principal component analysis is applied and turns out to be useful to depict biologically important proteins for both supernatant and cell components.


Streptococcus pyogenes proteomic analysis principal component analysis 


  1. 1.
    Barnett, T.C., Bugrysheva, J.V., Scott, J.R.: Role of mRNA stability in growth phase regulation of gene expression in the group A streptococcus. J. Bacteriol. 189, 1866–1873 (2007)CrossRefGoogle Scholar
  2. 2.
    Beyer-Sehlmeyer, G., Kreikemeyer, B., Hörster, A., Podbielski, A.: Analysis of the growth phase-associated transcriptome of streptococcus pyogenes. International Journal of Medical Microbiology 295(3), 161–177 (2005), CrossRefGoogle Scholar
  3. 3.
    Blackman, S.A., Smith, T.J., Foster, S.J.: The role of autolysins during vegetative growth of Bacillus subtilis 168. Microbiology (Reading, Engl.) 144 ( pt. 1), 73–82 (1998)Google Scholar
  4. 4.
    Ferretti, J.J., McShan, W.M., Ajdic, D., Savic, D.J., Savic, G., Lyon, K., Primeaux, C., Sezate, S., Suvorov, A.N., Kenton, S., Lai, H.S., Lin, S.P., Qian, Y., Jia, H.G., Najar, F.Z., Ren, Q., Zhu, H., Song, L., White, J., Yuan, X., Clifton, S.W., Roe, B.A., McLaughlin, R.: Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc. Natl. Acad. Sci. U.S.A. 98, 4658–4663 (2001)CrossRefGoogle Scholar
  5. 5.
    Ishihama, Y., Oda, Y., Tabata, T., Sato, T., Nagasu, T., Rappsilber, J., Mann, M.: Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol. Cell Proteomics 4, 1265–1272 (2005)CrossRefGoogle Scholar
  6. 6.
    Lei, B., Mackie, S., Lukomski, S., Musser, J.M.: Identification and immunogenicity of group A Streptococcus culture supernatant proteins. Infect. Immun. 68, 6807–6818 (2000)CrossRefGoogle Scholar
  7. 7.
    Len, A.C., Cordwell, S.J., Harty, D.W., Jacques, N.A.: Cellular and extracellular proteome analysis of Streptococcus mutans grown in a chemostat. Proteomics 3, 627–646 (2003)CrossRefGoogle Scholar
  8. 8.
    Mercier, C., Durrieu, C., Briandet, R., Domakova, E., Tremblay, J., Buist, G., Kulakauskas, S.: Positive role of peptidoglycan breaks in lactococcal biofilm formation. Mol. Microbiol. 46, 235–243 (2002)CrossRefGoogle Scholar
  9. 9.
    Okamoto, A., Taguchi, Y.H.: Principal component analysis for bacterial proteomic analysis. IPSJ SIG Technical Report 2011-BIO-26, 1–6 (2011)Google Scholar
  10. 10.
    Okamoto, A., Yamada, K.: Proteome driven re-evaluation and functional annotation of the Streptococcus pyogenes SF370 genome. BMC Microbiol. 11, 249 (2011)CrossRefGoogle Scholar
  11. 11.
    Oshida, T., Sugai, M., Komatsuzawa, H., Hong, Y.M., Suginaka, H., Tomasz, A.: A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-L-alanine amidase domain and an endo-beta-N-acetylglucosaminidase domain: cloning, sequence analysis, and characterization. Proc. Natl. Acad. Sci. U.S.A. 92, 285–289 (1995)CrossRefGoogle Scholar
  12. 12.
    Rao, P.K., Li, Q.: Principal Component Analysis of Proteome Dynamics in Iron-starved Mycobacterium Tuberculosis. J. Proteomics Bioinform. 2, 19–31 (2009)CrossRefGoogle Scholar
  13. 13.
    Shinoda, K., Tomita, M., Ishihama, Y.: emPAI Calc–for the estimation of protein abundance from large-scale identification data by liquid chromatography-tandem mass spectrometry. Bioinformatics 26, 576–577 (2010)CrossRefGoogle Scholar
  14. 14.
    Taguchi, Y.H., Okamoto, A.: Principal component analysis for bacterial proteomic analysis. In: 2011 IEEE International Conference on Bioinformatics and Biomedicine Workshops, pp. 961–963 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Y. -h. Taguchi
    • 1
  • Akira Okamoto
    • 2
  1. 1.Department of PhysicsChuo UniversityBunkyo-kuJapan
  2. 2.Department of School Nursing and HealthAichi University of EducationKariyaJapan

Personalised recommendations