Robust Community Detection Methods with Resolution Parameter for Complex Detection in Protein Protein Interaction Networks

  • Twan van Laarhoven
  • Elena Marchiori
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7632)

Abstract

Unraveling the community structure of real-world networks is an important and challenging problem. Recently, it has been shown that methods based on optimizing a clustering measure, in particular modularity, have a resolution bias, e.g. communities with sizes below some threshold remain unresolved. This problem has been tackled by incorporating a parameter in the method which influences the size of the communities. Methods incorporating this type of parameter are also called multi-resolution methods. In this paper we consider fast greedy local search optimization of a clustering objective function with two different objective functions incorporating a resolution parameter: modularity and a function we introduced in a recent work, called w-log-v. We analyze experimentally the performance of the resulting algorithms when applied to protein-protein interaction (PPI) networks. Specifically, publicly available yeast protein networks from past studies, as well as the present BioGRID database, are considered. Furthermore, to test robustness of the methods, various types of randomly perturbed networks obtained from the BioGRID data are also considered. Results of extensive experiments show improved or competitive performance over MCL, a state-of-the-art algorithm for complex detection in PPI networks, in particular on BioGRID data, where w-log-v obtains excellent accuracy and robustness performance.

Keywords

Positive Predictive Value Community Detection Resolution Parameter Detect Protein Complex Condensed Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Blondel, V.D., et al.: Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment 2008(10), P10008+ (2008)Google Scholar
  2. 2.
    Brohée, S., van Helden, J.: Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics 7(1), 488+ (2006)Google Scholar
  3. 3.
    Cherry, J.M., et al.: Saccharomyces Genome Database: the genomics resource of budding yeast. Nucleic Acids Research (2011)Google Scholar
  4. 4.
    Chua, H.N., et al.: Using indirect protein-protein interactions for protein complex prediction. Journal of Bioinformatics and Computational Biology 6(3), 435–466 (2008)CrossRefGoogle Scholar
  5. 5.
    Collins, S., et al.: Towards a comprehensive atlas of the physical interactome of saccharomyces cerevisiae. In: Molecular Cellular Proteomics, pp. 600200–600381 (2007)Google Scholar
  6. 6.
    Edwards, A.M., et al.: Bridging structural biology and genomics: assessing protein interaction data with known complexes. Trends in Genetics 18(10), 529–536 (2002)CrossRefGoogle Scholar
  7. 7.
    Fortunato, S.: Community detection in graphs. Physics Reports 486, 75–174 (2010)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Fortunato, S., Barthélemy, M.: Resolution limit in community detection. Proceedings of the National Academy of Sciences 104(1), 36–41 (2007)CrossRefGoogle Scholar
  9. 9.
    Gavin, A.C., et al.: Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868), 141–147 (2002)CrossRefGoogle Scholar
  10. 10.
    Gavin, A.-C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Rau, C., Jensen, L.J., Bastuck, S., Dumpelfeld, B., Edelmann, A., Heurtier, M.-A., Hoffman, V., Hoefert, C., Klein, K., Hudak, M., Michon, A.-M., Schelder, M., Schirle, M., Remor, M., Rudi, T., Hooper, S., Bauer, A., Bouwmeester, T., Casari, G., Drewes, G., Neubauer, G., Rick, J.M., Kuster, B., Bork, P., Russell, R.B., Superti-Furga, G.: Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084), 631–636 (2006)CrossRefGoogle Scholar
  11. 11.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America 99(12), 7821–7826 (2002a)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. National. Academy of Science 99, 7821–7826 (2002b)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Ho, Y., et al.: Systematic identification of protein complexes in saccharomyces cerevisiae by mass spectrometry. Nature 415(6868), 180–183 (2002)CrossRefGoogle Scholar
  14. 14.
    Krogan, N.J., et al.: Global landscape of protein complexes in the yeast saccharomyces cerevisiae. Nature 440(7084), 637–643 (2006)CrossRefGoogle Scholar
  15. 15.
    Lambiotte, R.: Multi-scale Modularity in Complex Networks. In: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks, pp. 546–553 (2010)Google Scholar
  16. 16.
    Lancichinetti, A., Fortunato, S.: Community detection algorithms: A comparative analysis. Phys. Rev. E 80, 56117 (2009)CrossRefGoogle Scholar
  17. 17.
    Lewis, A., et al.: The function of communities in protein interaction networks at multiple scales. BMC Syst Biol. 4, 100 (2010)CrossRefGoogle Scholar
  18. 18.
    Li, X., et al.: Computational approaches for detecting protein complexes from protein interaction networks: a survey. BMC Genomics, 11(suppl. 1), S3+ (2010)Google Scholar
  19. 19.
    Mewes, H.W., et al.: MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 30, 31–34 (2002)CrossRefGoogle Scholar
  20. 20.
    Nepusz, T., et al.: Detecting overlapping protein complexes in protein-protein interaction networks. Nature Methods (2012)Google Scholar
  21. 21.
    Pu, S., et al.: Identifying functional modules in the physical interactome of Saccharomyces cerevisiae. Proteomics 7(6), 944–960 (2007)CrossRefGoogle Scholar
  22. 22.
    Ronhovde, P., Nussinov, Z.: Multiresolution community detection for megascale networks by information-based replica correlations. Physical Review E, 80(1), 016109+ (2009)Google Scholar
  23. 23.
    Rosvall, M., Bergstrom, C.T.: Maps of random walks on complex networks reveal community structure. Proceedings of the National Academy of Sciences of the United States of America 105(4), 1118–1123 (2008)CrossRefGoogle Scholar
  24. 24.
    Stark, C., et al.: Biogrid: a general repository for interaction datasets. Nucleic Acids Research 34(Database-Issue), 535–539 (2006)Google Scholar
  25. 25.
    Uetz, P., et al.: A comprehensive analysis of protein-protein interactions in saccharomyces cerevisiae. Nature 403(6770), 623–627 (2000)CrossRefGoogle Scholar
  26. 26.
    Van Dongen, S.: Graph Clustering Via a Discrete Uncoupling Process. SIAM Journal on Matrix Analysis and Applications 30(1), 121–141 (2008)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    van Laarhoven, T., Marchiori, E.: Graph clustering with local search optimization: does the objective function matter? (submitted, 2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Twan van Laarhoven
    • 1
  • Elena Marchiori
    • 1
  1. 1.Institute for Computing and Information SciencesRadboud UniversityNijmegenThe Netherlands

Personalised recommendations