Skip to main content

Compact Stateful Encryption Schemes with Ciphertext Verifiability

  • Conference paper
Advances in Information and Computer Security (IWSEC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7631))

Included in the following conference series:

Abstract

Increasingly wider deployment of encryption schemes call for schemes possessing additional properties such as randomness re-use, compactness and ciphertext verifiability. While novel approaches such as stateful encryption schemes contributes for randomness re-use (to save computational efforts), the requirements such as ciphertext verifiability leads to increase in the size of ciphertext. Thus, it is interesting and challenging to design stateful encryption schemes that offer ciphertext verifiability and result in compact ciphertexts. We propose two new stateful public key encryption schemes with ciphertext verifiability. Our schemes offer more compact ciphertexts when compared to all existing stateful public key encryption schemes with ciphertext verifiability. Our first scheme is based on the SDH assumption and the second scheme is based on the CDH assumption. We have proved both the schemes in the random oracle model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdalla, M., Bellare, M., Rogaway, P.: The Oracle Diffie-Hellman Assumptions and an Analysis of DHIES. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 143–158. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  2. Abe, M., Gennaro, R., Kurosawa, K., Shoup, V.: Tag-KEM/DEM: A New Framework for Hybrid Encryption and A New Analysis of Kurosawa-Desmedt KEM. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 128–146. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Abe, M., Kiltz, E., Okamoto, T.: Compact CCA-Secure Encryption for Messages of Arbitrary Length. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 377–392. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  4. Baek, J., Chu, C.-K., Zhou, J.: On Shortening Ciphertexts: New Constructions for Compact Public Key and Stateful Encryption Schemes. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 302–318. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Bellare, M., Kohno, T., Shoup, V.: Stateful public-key cryptosystems: how to encrypt with one 160-bit exponentiation. In: ACM Conference on Computer and Communications Security, pp. 380–389. ACM (2006)

    Google Scholar 

  6. Boyen, X.: Miniature CCA2 PK Encryption: Tight Security Without Redundancy. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 485–501. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  7. Cash, D., Kiltz, E., Shoup, V.: The twin diffie-hellman problem and applications. Journal of Cryptology 22(4), 470–504 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against chosen ciphertext attack. SIAM Journal on Computing 33(1), 167–226 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fujisaki, E., Okamoto, T.: How to Enhance the Security of Public-Key Encryption at Minimum Cost. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 53–68. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  10. Fujisaki, E., Okamoto, T.: Secure Integration of Asymmetric and Symmetric Encryption Schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537–554. Springer, Heidelberg (1999)

    Google Scholar 

  11. Halevi, S., Rogaway, P.: A Tweakable Enciphering Mode. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Kiltz, E., Malone-Lee, J.: A General Construction of IND-CCA2 Secure Public Key Encryption. In: Paterson, K.G. (ed.) Cryptography and Coding 2003. LNCS, vol. 2898, pp. 152–166. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Kurosawa, K., Matsuo, T.: How to Remove MAC from DHIES. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 236–247. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Okamoto, T., Pointcheval, D.: The Gap-Problems: A New Class of Problems for the Security of Cryptographic Schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992, pp. 104–118. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  15. Pass, R., Shelat, A., Vaikuntanathan, V.: Relations Among Notions of Non-malleability for Encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 519–535. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vivek, S.S., Selvi, S.S.D., Rangan, C.P. (2012). Compact Stateful Encryption Schemes with Ciphertext Verifiability. In: Hanaoka, G., Yamauchi, T. (eds) Advances in Information and Computer Security. IWSEC 2012. Lecture Notes in Computer Science, vol 7631. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34117-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34117-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34116-8

  • Online ISBN: 978-3-642-34117-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics