Skip to main content

Best Linear Filter with Unknown (x(t),θ(t))

  • Chapter
Continuous-Time Markov Jump Linear Systems

Abstract

It is a well-known fact that the optimal nonlinear filter for continuous-time MJLS, in the general case in which both the state variable and the jump parameter are not known, cannot be given in terms of a closed finite system of stochastic differential equations (it is not a finite filter). The aim of this chapter is to derive the best linear mean-square estimator for continuous-time MJLS in the scenario described above, i.e., assuming that only an output is available. The idea is to derive a filter which bears the desirable property of the Kalman filter, a recursive scheme suitable for computer implementation which allows some offline computation that alleviates the computational burden. The filter is derived as a function of the error covariance matrix whose dynamics is governed by two matrix differential equations: one associated with the second moment of the state variable and the other one associated with the second moment of the estimator. Both the finite- and infinite-horizon cases are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.A. Ackerson, K.S. Fu, On state estimation in switching environments. IEEE Transactions on Automatic Control 15(1), 10–17 (1970)

    Article  Google Scholar 

  2. Y. Bar-Shalom, X.R. Li, Estimation and Tracking. Principles, Techniques, and Software. (Artech House, Norwood, 1993)

    Google Scholar 

  3. T. Björk, Finite dimensional optimal filters for a class of Itô processes with jumping parameters. Stochastics 4, 167–183 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Björk, Finite optimal filters for a class of nonlinear diffusions with jumping parameters. Stochastics 6, 121–138 (1982)

    Article  MATH  Google Scholar 

  5. H.A.P. Blom, Y. Bar-Shalom, The interacting multiple model algorithm for systems with Markovian jumping parameters. IEEE Transactions on Automatic Control 33, 780–783 (1988)

    Article  MATH  Google Scholar 

  6. C.G. Chang, M. Athans, State estimation for discrete systems with switching parameters. IEEE Transactions on Aerospace and Electronic Systems 14, 418–424 (1978)

    Article  MathSciNet  Google Scholar 

  7. O.L.V. Costa, Linear minimum mean square error estimation for discrete-time Markovian jump linear systems. IEEE Transactions on Automatic Control 39, 1685–1689 (1994)

    Article  MATH  Google Scholar 

  8. O.L.V. Costa, M.D. Fragoso, M.G. Todorov, On the filtering problem for continuous-time Markov jump linear systems with no observation of the Markov chain. European Journal of Control 17, 339–354 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. O.L.V. Costa, S. Guerra, Robust linear filtering for discrete-time hybrid Markov linear systems. International Journal of Control 75, 712–727 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. O.L.V. Costa, S. Guerra, Stationary filter for linear minimum mean square error estimator of discrete-time Markovian jump systems. IEEE Transactions on Automatic Control 47, 1351–1356 (2002)

    Article  MathSciNet  Google Scholar 

  11. M.H.A. Davis, Linear Estimation and Stochastic Control (Chapman & Hall, London, 1977)

    MATH  Google Scholar 

  12. M.H.A. Davis, S.I. Marcus, An introduction to nonlinear filtering, in Stochastic Systems: The Mathematics of Filtering and Identification and Applications, vol. 2, ed. by M. Hazewinkel, J.C. Willems (Reidel, Dordrecht, 1981), pp. 53–75

    Chapter  Google Scholar 

  13. M.H.A. Davis, R.B. Vinter, Stochastic Modelling and Control (Chapman & Hall, London, 1985)

    Book  MATH  Google Scholar 

  14. C.E. de Souza, M.D. Fragoso, H filtering for Markovian jump linear systems. International Journal of Systems Science 33, 909–915 (2002)

    Article  MATH  Google Scholar 

  15. C.E. de Souza, M.D. Fragoso, Robust H filtering for uncertain Markovian jump linear systems. International Journal of Robust and Nonlinear Control 12, 435–446 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. C.E. de Souza, M.D. Fragoso, H filtering for discrete-time systems with Markovian jump parameters. International Journal of Robust and Nonlinear Control 14, 1299–1316 (2003)

    Article  Google Scholar 

  17. A. Doucet, C. Andrieu, Iterative algorithms for state estimation of jump Markov linear systems. IEEE Transactions on Automatic Control 49, 1216–1227 (2000)

    Google Scholar 

  18. A. Doucet, A. Logothetis, V. Krishnamurthy, Stochastic sampling algorithms for state estimation of jump Markov linear systems. IEEE Transactions on Automatic Control 45, 188–202 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. F. Dufour, P. Bertrand, The filtering problem for continuous-time linear systems with Markovian switching coefficients. Systems & Control Letters 23, 453–461 (1994)

    Article  MathSciNet  Google Scholar 

  20. F. Dufour, R.J. Elliott, Adaptive control of linear systems with Markov perturbations. IEEE Transactions on Automatic Control 43, 351–372 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. R.J. Elliott, F. Dufour, W.P. Malcolm, State and mode estimation for discrete-time jump Markov systems. SIAM Journal on Control and Optimization 44, 1081–1104 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. R.J. Elliott, F. Dufour, F. Sworder, Exact hybrid filters in discrete-time. IEEE Transactions on Automatic Control 41, 1807–1810 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. M.D. Fragoso, O.L.V. Costa, A unified approach for stochastic and mean square stability of continuous-time linear systems with Markovian jumping parameters and additive disturbance. SIAM Journal on Control and Optimization 44, 1165–1191 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. M.D. Fragoso, O.L.V. Costa, J. Baczynski, The minimum linear mean square filter for a class of hybrid systems, in Proceedings of the European Control Conference—ECC2001, Porto, Portugal, 2001, pp. 319–322

    Google Scholar 

  25. M.D. Fragoso, O.L.V. Costa, J. Baczynski, N. Rocha, Optimal linear mean square filter for continuous-time jump linear systems. IEEE Transactions on Automatic Control 50, 1364–1369 (2005)

    Article  MathSciNet  Google Scholar 

  26. M.D. Fragoso, N. Rocha, Stationary filter for continuous-time Markovian jump linear systems. SIAM Journal on Control and Optimization 44, 801–815 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Kallianpur, Stochastic Filtering Theory (Springer, New York, 1980)

    Book  MATH  Google Scholar 

  28. J. Lam, S. Xu, T. Chen, Robust H -filtering for uncertain Markovian jump systems with mode-dependent time delays. IEEE Transactions on Automatic Control 48, 900–907 (1999)

    MathSciNet  Google Scholar 

  29. K.A. Loparo, Z. Roth, S.J. Eckert, Nonlinear filtering for systems with random structure. IEEE Transactions on Automatic Control 31, 1064–1068 (1999)

    Article  MathSciNet  Google Scholar 

  30. M.S. Mahmoud, P. Shi, Robust Kalman filtering for continuous time-lag systems with Markovian jump parameters. IEEE Transactions on Circuits and Systems 50, 98–105 (2003)

    Article  MathSciNet  Google Scholar 

  31. M. Mariton, Jump Linear Systems in Automatic Control (Dekker, New York, 1990)

    Google Scholar 

  32. P. Shi, E.K. Boukas, R.K. Agarwal, Control of Markovian jump discrete-time systems with norm bounded uncertainty and unknown delay. IEEE Transactions on Automatic Control 44, 2139–2144 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. D.D. Sworder, J.E. Boyd, Estimation Problems in Hybrid Systems (Cambridge University Press, London, 1999)

    Book  Google Scholar 

  34. J.K. Tugnait, Adaptive estimation and identification for discrete systems with Markov jump parameters. IEEE Transactions on Automatic Control 27, 1054–1064 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  35. J.K. Tugnait, Detection and estimation for abruptly changing systems. Automatica 18, 607–615 (1982)

    Article  MATH  Google Scholar 

  36. W.M. Wonham, Some applications of stochastic differential equations to optimal nonlinear filtering. SIAM Journal on Control and Optimization 3, 347–369 (1965)

    MathSciNet  Google Scholar 

  37. A.J. Yashin, Relative semi-invariants in the filtration of processes with step components. Avtomatika I Telemehanika 2, 20–26 (1970)

    Google Scholar 

  38. Q. Zhang, Nonlinear filtering and control of a switching diffusion with small observation noise. SIAM Journal on Control and Optimization 36, 1638–1668 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  39. Q. Zhang, Optimal filtering of discrete-time hybrid systems. Journal of Optimization Theory and Applications 100, 123–144 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. Q. Zhang, Hybrid filtering for linear systems with non-Gaussian disturbances. IEEE Transactions on Automatic Control 45, 50–61 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Costa, O., Fragoso, M., Todorov, M. (2013). Best Linear Filter with Unknown (x(t),θ(t)). In: Continuous-Time Markov Jump Linear Systems. Probability and Its Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34100-7_7

Download citation

Publish with us

Policies and ethics