Equi-affine Invariant Geometries of Articulated Objects

  • Dan Raviv
  • Alexander M. Bronstein
  • Michael M. Bronstein
  • Ron Kimmel
  • Nir Sochen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7474)


We introduce an (equi-)affine invariant geometric structure by which surfaces that go through squeeze and shear transformations can still be properly analyzed. The definition of an affine invariant metric enables us to evaluate a new form of geodesic distances and to construct an invariant Laplacian from which local and global diffusion geometry is constructed. Applications of the proposed framework demonstrate its power in generalizing and enriching the existing set of tools for shape analysis.


Heat Kernel Shot Noise Shape Analysis Geodesic Distance Voronoi Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm for approximate nearest neighbor searching. J. ACM 45, 891–923 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bérard, P., Besson, G., Gallot, S.: Embedding riemannian manifolds by their heat kernel. Geometric and Functional Analysis 4, 373–398 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bronstein, A., Bronstein, M., Kimmel, R.: Efficient computation of isometry-invarient distances between surfaces. SIAM J. Scientific Computing 28(5), 1812–1836 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bronstein, A.M., Bronstein, M.M., Castellani, U., Falcidieno, B., Fusiello, A., Godil, A., Guibas, L.J., Kokkinos, I., Lian, Z., Ovsjanikov, M., Patané, G., Spagnuolo, M., Toldo, R.: SHREC 2010: robust large-scale shape retrieval benchmark. In: Proc. 3DOR (2010)Google Scholar
  5. 5.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Expression-invariant face recognition via spherical embedding. In: Proc. Int’l Conf. Image Processing (ICIP), vol. 3, pp. 756–759 (2005)Google Scholar
  6. 6.
    Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Efficient computation of isometry-invariant distances between surfaces. SIAM J. Scientific Computing 28, 1812–1836 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Bronstein, M.M., Bronstein, A.M.: Shape recognition with spectral distances with spectral distances. IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI) 33, 1065–1071 (2011)CrossRefGoogle Scholar
  8. 8.
    Buchin, S.: Affine differential geometry. Science Press, Beijing (1983)zbMATHGoogle Scholar
  9. 9.
    Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry. Graduate studies in mathematics, vol. 33. American Mathematical Society (2001)Google Scholar
  10. 10.
    Coifman, R.R., Lafon, S.: Diffusion maps. Applied and Computational Harmonic Analysis 21, 5–30 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Dierkes, U., Hildebrandt, S., Kuster, A., Wohlrab, O.: Minimal Surfaces I. Springer, Heidelberg (1992)zbMATHGoogle Scholar
  12. 12.
    Dziuk, G.: Finite elements for the Beltrami operator on arbitrary surfaces. In: Hildebrandt, S., Leis, R. (eds.) Partial Differential Equations and Calculus of Variations, pp. 142–155 (1988)Google Scholar
  13. 13.
    Elad, A., Keller, Y., Kimmel, R.: Texture mapping via spherical multi-dimensional scaling. In: Proc. Scale-Space Theories in Computer Vision, pp. 443–455 (2005)Google Scholar
  14. 14.
    Elad, A., Kimmel, R.: On bending invariant signatures for surfaces. Trans. on Pattern Analysis and Machine Intelligence (PAMI) 25, 1285–1295 (2003)CrossRefGoogle Scholar
  15. 15.
    Gebal, K., Bærentzen, J.A., Aanæs, H., Larsen, R.: Shape analysis using the auto diffusion function. In: Proc. of the Symposium on Geometry Processing, pp. 1405–1413 (2009)Google Scholar
  16. 16.
    Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. Proc. National Academy of Sciences (PNAS) 95, 8431–8435 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Mémoli, F., Sapiro, G.: A theoretical and computational framework for isometry invariant recognition of point cloud data. Foundations of Computational Mathematics 5, 313–346 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R.: Volumetric heat kernel signatures. In: Proc. 3D Object recognition (3DOR), part of ACM Multimedia (2010)Google Scholar
  19. 19.
    Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R., Sapiro, G.: Diffusion symmetries of non-rigid shapes. In: Proc. International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT) (2010)Google Scholar
  20. 20.
    Reuter, M., Biasotti, S., Giorgi, D., Patanè, G., Spagnuolo, M.: Discrete Laplace–Beltrami operators for shape analysis and segmentation. Computers & Graphics 33, 381–390 (2009)CrossRefGoogle Scholar
  21. 21.
    Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Proc. Symposium on Geometry Processing (SGP), pp. 225–233 (2007)Google Scholar
  22. 22.
    Schwartz, E.L., Shaw, A., Wolfson, E.: A numerical solution to the generalized mapmaker’s problem: flattening nonconvex polyhedral surfaces. Trans. on Pattern Analysis and Machine Intelligence (PAMI) 11, 1005–1008 (1989)CrossRefGoogle Scholar
  23. 23.
    Sochen, N.: Affine-invariant flows in the Beltrami framework. Journal of Mathematical Imaging and Vision 20, 133–146 (2004)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sun, J., Ovsjanikov, M., Guibas, L.J.: A concise and provably informative multi-scale signature based on heat diffusion. In: Proc. Symposium on Geometry Processing (SGP) (2009)Google Scholar
  25. 25.
    Surazhsky, V., Surazhsky, T., Kirsanov, D., Gortler, S., Hoppe, H.: Fast exact and approximate geodesics on meshes. In: Proc. ACM Transactions on Graphics (SIGGRAPH), pp. 553–560 (2005)Google Scholar
  26. 26.
    Yatziv, L., Bartesaghi, A., Sapiro, G.: O(N) implementation of the fast marching algorithm. J. Computational Physics 212, 393–399 (2006)zbMATHCrossRefGoogle Scholar
  27. 27.
    Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Automatic Control 40, 1528–1538 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Ovsjanikov, M., Bronstein, A.M., Bronstein, M.M., Guibas, L.J.: Shape Google: a computer vision approach to invariant shape retrieval. In: Proc. NORDIA (2009)Google Scholar
  29. 29.
    Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R., Sochen, N.: Affine-invariant diffusion geometry of deformable 3D shapes. In: Proc. Computer Vision and Pattern Recognition (CVPR) (2011)Google Scholar
  30. 30.
    Raviv, D., Bronstein, A.M., Bronstein, M.M., Kimmel, R., Sochen, N.: Affine-invariant geodesic geometry of deformable 3D shapes. Computers & Graphics 35, 692–697 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dan Raviv
    • 1
  • Alexander M. Bronstein
    • 2
  • Michael M. Bronstein
    • 3
  • Ron Kimmel
    • 1
  • Nir Sochen
    • 4
  1. 1.Computer Science DepartmentTechnionIsrael
  2. 2.School of Electrical EngineeringTel Aviv UniversityIsrael
  3. 3.Faculty of InformaticsUniversità della Svizzera ItalianaSwitzerland
  4. 4.Department of Applied MathematicsTel Aviv UniversityIsrael

Personalised recommendations