Skip to main content

Perspective and Non-perspective Camera Models in Underwater Imaging – Overview and Error Analysis

  • Conference paper
Outdoor and Large-Scale Real-World Scene Analysis

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7474))

Abstract

When capturing images underwater, image formation is affected in two major ways. First, the light rays traveling underwater are absorbed and scattered depending on their wavelength, creating effects on the image colors. Secondly, the glass interface between air and water refracts the ray entering the camera housing because of a different index of refraction of water, hence the ray is also affected in a geometrical way.

This paper examines different camera models and their capabilities to deal with geometrical effects caused by refraction. Using imprecise camera models leads to systematic errors when computing 3D reconstructions or otherwise exploiting geometrical properties of images. In the literature, many authors have published work on underwater imaging by using the perspective pinhole camera model (single viewpoint model - SVP) with a different effective focal length and distortion to compensate for the error induced by refraction at the camera housing. On the other hand, methods were proposed, where refraction is modeled explicitly or where generic, non-single-view-point camera models are used. In addition to discussing all three model categories, an accuracy analysis of using the perspective model on underwater images is given and shows that the perspective model leads to systematic errors that compromise measurement accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, M., Ahuja, N.: A pupil-centric model of image formation. International Journal of Computer Vision 48(3), 195–214 (2002)

    Article  MATH  Google Scholar 

  2. Bouguet, J.Y.: Visual methods for three-dimensional modelling. Ph.D. thesis, California Institute of Technology Pasadena, CA, USA (1999), http://etd.caltech.edu/etd/available/etd-02072008-115723/

  3. Brandou, V., Allais, A., Perrier, M., Malis, E., Rives, P., Sarrazin, J., Sarradin, P.: 3d reconstruction of natural underwater scenes using the stereovision system iris. In: Proc. OCEANS 2007- Europe, pp. 1–6 (2007)

    Google Scholar 

  4. Bryant, M., Wettergreen, D., Abdallah, S., Zelinsky, A.: Robust camera calibration for an autonomous underwater vehicle. In: Australian Conference on Robotics and Automation (ACRA 2000) (August 2000)

    Google Scholar 

  5. Carreras, M., Ridao, P., Garcia, R., Nicosevici, T.: Vision-based localization of an underwater robot in a structured environment. In: Proceedings of the International Conference on Robotics and Automation, ICRA 2003, vol. 1, pp. 971–976 (Sepember 2003)

    Google Scholar 

  6. Chang, Y.J., Chen, T.: Multi-view 3d reconstruction for scenes under the refractive plane with known vertical direction. In: IEEE International Conference on Computer Vision, ICCV (2011)

    Google Scholar 

  7. Chari, V., Sturm, P.: Multiple-view geometry of the refractive plane. In: Proceedings of the 20th British Machine Vision Conference, London, UK (September 2009), http://perception.inrialpes.fr/Publications/2009/CS09

  8. Costa, C., Loy, A., Cataudella, S., Davis, D., Scardi, M.: Extracting fish size using dual underwater cameras. Aquacultural Engineering 35(3), 218–227 (2006), http://www.sciencedirect.com/science/article/B6T4C-4K4WMTT-1/2/d8103dd1d6946795645bf447642c7813

    Article  Google Scholar 

  9. Eustice, R., Singh, H., Howland, J.: Image registration underwater for fluid flow measurements and mosaicking. In: OCEANS 2000 MTS/IEEE Conference and Exhibition, vol. 3, pp. 1529–1534 (2000)

    Google Scholar 

  10. Ferreira, R., Costeira, J.P., Santos, J.A.: Stereo Reconstruction of a Submerged Scene. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3522, pp. 102–109. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Foerstner, W., Wolff, K.: Exploiting the multi view geometry for automatic surfaces reconstruction using feature based matching in multi media photogrammetry. In: Proceedings of the 19th ISPRS Congress, pp. 5B 900–907 (2000)

    Google Scholar 

  12. Fryer, J.G., Fraser, C.S.: On the calibration of underwater cameras. The Photogrammetric Record 12 (1986)

    Google Scholar 

  13. Garcia, R., Batlle, J., Cufi, X., Amat, J.: Positioning an underwater vehicle through image mosaicking. In: Proceedings of the International Conference on Robotics and Automation, ICRA 2001, vol. 3, pp. 2779–2784 (2001)

    Google Scholar 

  14. Glaeser, G., Schröcker, H.P.: Reflections on refractions. Journal for Geometry and Graphics (JGG) 4, 1–18 (2000)

    MATH  Google Scholar 

  15. Gracias, N., Santos Victor, J.: Underwater video mosaics as visual navigation maps. Journal of Computer Vision and Image Understanding (CVIU) 79(1), 66–91 (2000)

    Article  Google Scholar 

  16. Gracias, N., van der Zwaan, S., Bernardino, A., Santos-Victor, J.: Mosaic-based navigation for autonomous underwater vehicles. IEEE Journal of Oceanic Engineering 28(4), 609–624 (2003)

    Article  Google Scholar 

  17. Grossberg, M.D., Nayar, S.K.: The raxel imaging model and ray-based calibration. International Journal of Computer Vision 61(2), 119–137 (2005)

    Article  Google Scholar 

  18. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press (2004), http://www.amazon.com/Multiple-View-Geometry-Computer-Vision/dp/0521540518

  19. Harvey, E.S., Shortis, M.R.: Calibration stability of an underwater stereo-video system: Implications for measurement accuracy and precision. Marine Technology Society Journal 32, 3–17 (1998)

    Google Scholar 

  20. Hecht, E.: Optik. Oldenburg Verlag,Muenchen Wien (2005)

    Google Scholar 

  21. Heikkila, J., Silven, O.: A four-step camera calibration procedure with implicit image correction. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, p. 1106 (1997)

    Google Scholar 

  22. Hogue, A., German, A., Jenkin, M.: Underwater environment reconstruction using stereo and inertial data. In: IEEE International Conference on Systems, Man and Cybernetics, ISIC 2007, October 7-10, pp. 2372–2377 (2007)

    Google Scholar 

  23. Hogue, A., German, A., Zacher, J., Jenkin, M.: Underwater 3d mapping: Experiences and lessons learned. In: The 3rd Canadian Conference on Computer and Robot Vision, June 7- 9, p. 24 (2006)

    Google Scholar 

  24. Jasiobedzki, P., Se, S., Bondy, M., Jakola, R.: Underwater 3d mapping and pose estimation for rov operations. In: OCEANS 2008, September 15-18, pp. 1–6 (2008)

    Google Scholar 

  25. Johnson-Roberson, M., Pizarro, O., Williams, S., Mahon, I.: Generation and visualization of large-scale three-dimensional reconstructions from underwater robotic surveys. Journal of Field Robotics 27 (2010)

    Google Scholar 

  26. Kawai, R., Yamashita, A., Kaneko, T.: Three-dimensional measurement of objects in water by using space encoding method. In: IEEE International Conference on Robotics and Automation, ICRA 2009, May 12-17, pp. 2830–2835 (2009)

    Google Scholar 

  27. Kunz, C., Singh, H.: Hemispherical refraction and camera calibration in underwater vision. In: OCEANS 2008, September 15-18, pp. 1–7 (2008)

    Google Scholar 

  28. Kwon, Y.: A camera calibration algorithm for the underwater motion analysis. In:17th International Symposium on Biomechanics in Sports, ISBS - Conference Proceedings Archive (1999)

    Google Scholar 

  29. Kwon, Y., Casebolt, J.: Effects of light refraction on the accuracy of camera calibration and reconstruction in underwater motion analysis. Sports Biomech. 5(1), 95–120 (2006)

    Article  Google Scholar 

  30. Lavest, J.-M., Rives, G., Lapresté, J.T.: Underwater Camera Calibration. In: Vernon, D. (ed.) ECCV 2000, Part II. LNCS, vol. 1843, pp. 654–668. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  31. Li, R., Tao, C., Zou, W.: An underwater digital photogrammetric system for fishery geomatics. In: Intl. Archives of PRS, vol. XXXI, pp. 319–323 (1996)

    Google Scholar 

  32. Li, R., Li, H., Zou, W., Smith, R., Curran, T.: Quantitative photogrammetric analysis of digital underwater video imagery. IEEE Journal of Oceanic Engineering 22(2), 364–375 (1997)

    Article  Google Scholar 

  33. Maas, H.G.: Digitale Photogrammetrie in der dreidimensionalen Stroemungsmesstechnik. Ph.D. thesis, Eidgenoessische Technische Hochschule Zuerich (1992)

    Google Scholar 

  34. Maas, H.G.: New developments in multimedia photogrammetry. In: Optical 3-D Measurement Techniques III. Wichmann Verlag, Karlsruhe (1995)

    Google Scholar 

  35. McGlone, J.C. (ed.): Manual of Photogrammetry, 5th edn. ASPRS (2004), http://www.amazon.de/Manual-Photogrammetry-American-Society/dp/0937294012

  36. Mobley, C.D.: Light and Water: Radiative Transfer in Natural Waters. Academic Press (1994)

    Google Scholar 

  37. Morris, N., Kutulakos, K.N.: Dynamic refraction stereo. In: Proc. 10th Int. Conf. Computer Vision, pp. 1573–1580 (2005)

    Google Scholar 

  38. Narasimhan, S.G., Nayar, S.: Structured light methods for underwater imaging: light stripe scanning and photometric stereo. In: Proceedings of 2005 MTS/IEEE OCEANS, vol. 3, pp. 2610–2617 (September 2005)

    Google Scholar 

  39. Nascimento, E.R., Campos, M.F.M., Barros, W.F.: Stereo based structure recovery of underwater scenes from automatically restored images. In: Nonato, L.G., Scharcanski, J. (eds.) Proceedings SIBGRAPI 2009 (Brazilian Symposium on Computer Graphics and Image Processing), October 11-14. IEEE Computer Society, Los Alamitos (2009), http://urlib.net/sid.inpe.br/sibgrapi80/2009/08.18.16.07

    Google Scholar 

  40. Negahdaripour, S., Sekkati, H., Pirsiavash, H.: Opti-acoustic stereo imaging, system calibration and 3-d reconstruction. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, June 17-22, pp. 1–8 (2007)

    Google Scholar 

  41. Negahdaripour, S., Sekkati, H., Pirsiavash, H.: Opti-acoustic stereo imaging: On system calibration and 3-d target reconstruction. IEEE Transactions on Image Processing 18(6), 1203–1214 (2009)

    Article  MathSciNet  Google Scholar 

  42. Negahdaripour, S., Xu, X., Khamene, A., Awan, Z.: 3-d motion and depth estimation from sea-floor images for mosaic-based station-keeping and navigation of rovs/auvs and high-resolution sea-floor mapping. In: Proceedings of the 1998 Workshop on Autonomous Underwater Vehicles, AUV 1998, pp. 191–200 (August 1998)

    Google Scholar 

  43. Pessel, N., Opderbecke, J., Aldon, M.J.: Camera self-calibration in underwater environment. In: WSCG (2003)

    Google Scholar 

  44. Pessel, N.: Auto-Calibrage d’une Caméra en Milieu Sous-Marin. Ph.D. thesis, Université Montpellier II (2003)

    Google Scholar 

  45. Pessel, N., Opderbecke, J., Aldon, M.J.: An experimental study of a robust self-calibration method for a single camera. In: 3rd International Symposium on Image and Signal Processing and Analysis, ISPA 2003. Sponsored by IEEE and EURASIP, Rome, Italie (September 2003)

    Google Scholar 

  46. Pizarro, O., Eustice, R., Singh, H.: Relative pose estimation for instrumented, calibrated imaging platforms. In: DICTA, pp. 601–612 (2003)

    Google Scholar 

  47. Pizarro, O., Eustice, R., Singh, H.: Large area 3d reconstructions from underwater surveys. In: Proc. OCEANS 2004, MTTS/IEEE TECHNO-OCEAN 2004, vol. 2, pp. 678–687 (2004)

    Google Scholar 

  48. Press, W.H., Vetterling, W.T., Teukolsky, S.A., Flannery, B.P.: Numerical Recipes in C++: the art of scientific computing, 2nd edn. Cambridge University Press, New York (2002)

    Google Scholar 

  49. Putze, T.: Erweiterte verfahren zur mehrmedienphotogrammetrie komplexer körper. In: Beiträge der Oldenburger 3D-Tage 2008. Herbert Wichmann Verlag, Heidelberg (2008)

    Google Scholar 

  50. Putze, T.: Geometrische und stochastische Modelle zur Optimierung der Leistungsfaehigkeit des Stroemungsmessverfahrens 3D-PTV. Ph.D. thesis, Technische Universitaet Dresden (2008)

    Google Scholar 

  51. Queiroz-Neto, J.P., Carceroni, R., Barros, W., Campos, M.: Underwater stereo. In: Proc. 17th Brazilian Symposium on Computer Graphics and Image Processing, October 17-20, pp. 170–177 (2004)

    Google Scholar 

  52. Schiller, I., Beder, C., Koch, R.: Calibration of a pmd camera using a planar calibration object together with a multi-camera setup. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXI. ISPRS Congress, Beijing, China, vol. XXXVII, Part B3a, pp. 297–302 (2008), www.mip.informatik.uni-kiel.de/tiki-index.php?page=Ingo+Schiller-23k-

  53. Sedlazeck, A., Koser, K., Koch, R.: 3d reconstruction based on underwater video from rov kiel 6000 considering underwater imaging conditions. In: Proc. OCEANS 2009, OCEANS 2009-EUROPE, May 11-14, pp. 1–10 (2009)

    Google Scholar 

  54. Sturm, P., Ramalingam, S., Lodha, S.: On calibration, structure from motion and multi-view geometry for generic camera models. In: Daniilidis, K., Klette, R. (eds.) Imaging Beyond the Pinhole Camera, Computational Imaging and Vision, vol. 33. Springer (August 2006), http://perception.inrialpes.fr/Publications/2006/SRL06

  55. Sturm, P., Ramalingam, S.: A Generic Concept for Camera Calibration. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004, Part II. LNCS, vol. 3022, pp. 1–13. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  56. Telem, G., Filin, S.: Calibration of consumer cameras in a multimedia environment. In: ASPERS 2006 Annual Conference (2006)

    Google Scholar 

  57. Telem, G., Filin, S.: Photogrammetric modeling of underwater environments. ISPRS Journal of Photogrammetry and Remote Sensing 65(5), 433–444 (2010), http://www.sciencedirect.com/science/article/B6VF4-50F9H66-1/2/d8dba566f79b0a207e13a6aa2bf3f69d

    Article  Google Scholar 

  58. Treibitz, T., Schechner, Y., Singh, H.: Flat refractive geometry. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8 (2008)

    Google Scholar 

  59. Triggs, B., McLauchlan, P.F., Hartley, R.I., Fitzgibbon, A.W.: Bundle Adjustment – A Modern Synthesis. In: Triggs, B., Zisserman, A., Szeliski, R. (eds.) Vision Algorithms 1999. LNCS, vol. 1883, pp. 298–372. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  60. Trucco, E., Doull, A., Odone, F., Fusiello, A., Lane, D.: Dynamic video mosaicing and augmented reality for subsea inspection and monitoring. In: Oceanology International, United Kingdom (2000)

    Google Scholar 

  61. Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses, an efficient and accurate camera calibration technique. IEEE Journal of Robotics and Automation RA-3(4), 323–344 (1987)

    Article  Google Scholar 

  62. Wolff, K.: Zur Approximation allgemeiner optischer Abbildungsmodelle und deren Anwendung auf eine geometrisch basierte Mehrbildzuordnung am Beispiel einer Mehrmedienabbildung. Ph.D. thesis, Rheinische Friedrich-Wilhelms-Universitaet Bonn (2007)

    Google Scholar 

  63. Xu, X., Negahdaripour, S.: Application of extended covariance intersection principle for mosaic-based optical positioning and navigation of underwatervehicle. In: ICRA 2001, pp. 2759–2766 (2001)

    Google Scholar 

  64. Yamashita, A., Hayashimoto, E., Kaneko, T., Kawata, Y.: 3-d measurement of objects in a cylindrical glass water tank with a laser range finder. In: Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003), October 27-31, vol. 2, pp. 1578–1583 (2003)

    Google Scholar 

  65. Yamashita, A., Fujii, A., Kaneko, T.: Three dimensional measurement of objects in liquid and estimation of refractive index of liquid by using images of water surface with a stereo vision system. In: ICRA, pp. 974–979 (2008)

    Google Scholar 

  66. Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: Proceedings of the International Conference on Computer Vision, Corfu, Greece, pp. 666–673 (1999), http://www.citeulike.org/user/snsinha/article/238276

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sedlazeck, A., Koch, R. (2012). Perspective and Non-perspective Camera Models in Underwater Imaging – Overview and Error Analysis. In: Dellaert, F., Frahm, JM., Pollefeys, M., Leal-Taixé, L., Rosenhahn, B. (eds) Outdoor and Large-Scale Real-World Scene Analysis. Lecture Notes in Computer Science, vol 7474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34091-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34091-8_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34090-1

  • Online ISBN: 978-3-642-34091-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics