Advertisement

Environmental Surveying and Surveillance

  • Joseph L. AwangeEmail author
  • John B. Kyalo Kiema
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

In this section, we discuss the quantitative and qualitative data that could be collected using GNSS satellites, and in so doing, attempt to answer the question “what can GNSS satellites deliver that is of use to environmental monitoring?” The observed parameters necessary for environmental monitoring vary, depending upon the indicators being assessed.

Keywords

Carrier Phase Very Long Baseline Interferometry Satellite Laser Range Integer Ambiguity Real Time Kinematic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anderssohn J, Wetzel H, Walter TR, Motagh M, Djamour Y, Kaufmann H (2008) Land subsidence pattern controlled by old alpine basement faults in the Kashmar Valley, northeast Iran: results from InSAR and levelling. Geophys J Int 174:287–294. doi: 10.1111/j.1365-246X.2008.03805.x CrossRefGoogle Scholar
  2. AUSPOS (2006) Australian online GPS processing service. http://www.ga.gov.au/bin/gps.pl. Accessed 14 May 2009
  3. Awange JL (2012) Environmental monitoring using GNSS, global navigation satellite system. Springer, BerlinCrossRefGoogle Scholar
  4. Awange JL, Grafarend EW (2005) Solving algebraic computational problems in geodesy and geoinformatics. Springer, BerlinGoogle Scholar
  5. Awange JL, Grafarend EW, Palánczz B, Zaletnyik P (2010) Algebraic geodesy and geoinformatics, 2nd edn. Springer, BerlinCrossRefGoogle Scholar
  6. El-Rabbany A (2006) Introduction to GPS global positioning system, 2nd edn. Artech House, New YorkGoogle Scholar
  7. Geoscience Australia (2009) Australian Regional GPS Network. http://www.ga.gov.au/geodesy/argn/. Accessed 16 May 2009
  8. Goncalves RM (2010) Short-term trend modeling of the shoreline through geodetic data using linear regression, robust estimation and artificial neural networks. Ph.D. Thesis, Geodetic Sciences Post-graduate Program, Federal University of Parana (UFPR), Curitiba, Brazil, 152 ppGoogle Scholar
  9. Goncalves RM, Awange JL, Krueger CP, Heck B, Coelho LS (2012) A comparison between three short-term shoreline prediction models. Ocean Coast Manag 69:102–110. doi: org/10.1016/j.ocecoaman.2012.07.024 CrossRefGoogle Scholar
  10. Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2011) Scientific value of real-time global positioning system data. Eos 92(15):125–126. doi: 10.1029/2011EO150001 CrossRefGoogle Scholar
  11. Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2010) The scientific value of high-rate, low-latency GPS data, a white paperGoogle Scholar
  12. Hofman-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS global navigation satellite system: GPS, GLONASS; Galileo and more. Springer, WienGoogle Scholar
  13. IGS (2009) International GNSS service. http://igscb.jpl.nasa.gov/. Accessed 16 May 2009
  14. Leick A (2004) GPS satellite surveying, 3rd edn. Wiley, New YorkGoogle Scholar
  15. Luhmann T, Robson S, Kyle S, Harley I (2011) Close range photogrammetry: principles, techniques and applications. Whittles Publishing, ScotlandGoogle Scholar
  16. Maryam D, Zoej V, Javad M, Iman E, Ali M, Sassan S (2009) InSAR monitoring of progressive land subsidence in Neyshabour, northeast Iran. Geophys J Int 178:47–56. doi: 10.1111/j.1365-246X.2009.04135.x CrossRefGoogle Scholar
  17. Matsuzaka S (2006) GPS network experience in Japan and its usefulness. Seventeenth United Nations regional cartographic conference, Geographical Survey Institute, BangkokGoogle Scholar
  18. Moffit FH, Mikhail E (1980) Photogrammetry, 3rd edn. Harper and Row Publishers, New YorkGoogle Scholar
  19. Motagh M, Djamour Y, Walter TR, Wetze H, Zschau J, Arabi S (2007) Land subsidence in Mashhad Valley, northeast Iran: results from InSAR, levelling and GPS. Geophys J Int 168:518–526. doi: 10.1111/j.1365-246X.2006.03246.x CrossRefGoogle Scholar
  20. Murai S (1999) GIS work book: fundamental and technical courses, volumes 1 and 2, National Space Development Agency of Japan (NASDA)/Remote Sensing Technology Center of Japan (RESTEC), Japan Association of surveyorsGoogle Scholar
  21. National Geodetic Survey (2006) Guidelines for new and existing continuously operating reference stations (CORS). NOAA, Silver SpringGoogle Scholar
  22. Prasad R, Ruggieri M (2005) Applied satellite navigation using GPS, Galileo and augmentation systems. Artech House, BostonGoogle Scholar
  23. Rizos C (2001) Alternatives to current GPS-RTK services and some implications for CORS infrastructure and operations. GPS Solutions 11(3):151–158CrossRefGoogle Scholar
  24. Sagiya T (2005) A decade of GEONET: 1994–2003 The continuous GPS observation in Japan and its impact on earthquake studies. Earth Planets Space 56:xxix-xliGoogle Scholar
  25. SAPOS (2009) Satellitenpositionierungsdienst der deutschen Landesvermessung. http://www.sapos.de/. Accessed 16 May 2009
  26. Schenk T (2005) Introduction to photogrammetry. The Ohio State University, ColumbusGoogle Scholar
  27. Schofield W, Breach M (2007) Engineering surveying, 6th edn. Elsevier, AmsterdamGoogle Scholar
  28. Snay R, Soler T (2008) Continuously operating reference station (CORS): history, applications, and future enhancements. J Surv Eng 134(4):95–104. doi: 10.1061/(ASCE)0733-9453(2008)134:4(95) CrossRefGoogle Scholar
  29. Stone W (2006) The evolution of the national geodetic survey’s continuously operating reference station network and online positioning user service. http://www.ngs.noaa.gov/PUBS_LIB/Evolution_of_CORS_and_OPUS.pdf. Accessed 16 May 2009
  30. US Army Corps of Engineers (2007) NAVSTAR global positioning system surveying, engineering and design manual, EM 1110–1-1003, WashingtonGoogle Scholar
  31. Wallace N (2007) CORS simulation for Australia. Curtin University of Technology, Final year project (unpublished)Google Scholar
  32. Wolf P (1980) Elements of photogrammetry. McGraw Hill Book Co., New YorkGoogle Scholar
  33. Wolfgang D (2005) Funktion und Nutzung des SAPOS–Deutschland-Netzes, Flächenmanagement und Bodenordnung (FuB). http://www.sapos.de/pdf/SAPOS_Deutschland_Netz_klein.pdf. Accessed 16 May 2009

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Spatial SciencesCurtin University of TechnologyPerthAustralia
  2. 2.Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Kyoto UniversityKyotoJapan
  4. 4.School of EnvironmentMaseno UniversityKisumuKenya
  5. 5.Geospatial and Space TechnologyUniversity of NairobiNairobiKenya

Personalised recommendations