Advertisement

Disaster Monitoring and Management

  • Joseph L. AwangeEmail author
  • John B. Kyalo Kiema
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Since time immemorial, natural disasters have continued to plague the history of mankind. They have varied in type, frequency, coverage and severity ranging from earthquakes, landslides, droughts, floods, tornadoes, hurricanes, tsunamis, volcanic eruptions etc. Over the last century, the frequency, severity and impact of natural disasters has increased substantially

Keywords

Normalize Difference Vegetation Index Land Subsidence Indian Ocean Dipole Tide Gauge Flash Flood 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adger WN, Huq S, Brown K, Conway D, Hulme M (2003) Adaptation to climate change in the developing world. Prog Dev Stud 3:179–195. doi: 10.1191/1464993403ps060oa Google Scholar
  2. Ailamaki A, Faloutsos C, Fischbeck P, Small M, VanBriesen J (2003) An environmental sensor network to determine drinking water quality and security. SIGMOD Rec 32(4):47–52. doi: 10.1145/959060.959069 CrossRefGoogle Scholar
  3. Alexander D (2002) Principles of emergency planning and management. Terra publishing, HarpendedGoogle Scholar
  4. Allenbach B, Andreoli R, Battiston S, Bestault C, Clandillon S, Fellah K, Henry JB, Meyer C, Scius H, Tholey N, Ysou H, de Fraipont P (2005) Rapid EO disaster mapping service: added value, feedback and perspectives after 4 Years of charter actions. In: IGARSS05 Proceedings, pp 4373–4378Google Scholar
  5. Al-Khudhairy DHA, Caravaggi I, Glada S (2005) Structural damage assessments from IKONOS data using change detection, object-oriented segmentation, and classification techniques. Photogram Eng Remote Sens 71:825837Google Scholar
  6. Antonov JI, Levitus S, Boyer TP (2002) Steric sea level variations during 1957–1994: importance of salinity. J Geophys Res (Oceans) 107(C12):8013. doi: 10.1029/2001JC000964
  7. Awange JL (2012) Environmental monitoring using GNSS, global navigation satellite system. Springer, BerlinGoogle Scholar
  8. Awange JL, Ogallo L, Kwang-Ho B, Were P, Omondi P, Omute P, Omulo M (2008) Falling Lake Victoria water levels: is climate a contribution factor? J Clim Change 89:287–297. doi: 10.1007/s10584-008-9409-x Google Scholar
  9. Awange JL, Aluoch J, Ogallo L, Omulo M, Omondi P (2007) Frequency and severity of drought in the Lake Victoria region (Kenya) and its effects on food security. Clim Res 33:135–142. doi: 10.3354/cr033135 CrossRefGoogle Scholar
  10. Awange JL, Fukuda Y (2003) On possible use of GPS-LEO satellite for flood forecasting. In: Accepted to the international civil engineering conference on sustainable development in the 21st Century “The Civil Engineer in Development” 12–16 August 2003, Nairobi, KenyaGoogle Scholar
  11. Baker HC, Dodson AH, Penna NT, Higgins M, Offiler D (2001) Ground-based GPS water vapour estimation: Potential for meteorological forecasting. J Atmos Solar Terr Phys 63(12):1305–1314CrossRefGoogle Scholar
  12. Ballesteros LF (2008) What determines a disaster? 54 Pesos, Sep 2008:54 Pesos 11 Sep 2008. http://54pesos.org/2008/09/11/what-determines-a-disaster/. Accessed 12 May 2011
  13. Bamber JL, Riva REM, Vermeersen BLA, LeBrocq AM (2009) Reassessment of the potential sea-level rise from a collapse of the West Antarctic ice sheet. Science 324:901–903. doi: 10.1126/science.1169335 CrossRefGoogle Scholar
  14. Bankoff G, Frerks, G, Hilhorst D (eds) (2003) Mapping vulnerability: disasters, development and people. ISBN 1-85383-964-7Google Scholar
  15. Barlow J, Franklin SE (2007) Mapping hazardous slope processes using digital data. In: Li J, Zlatanova S, Fabbri A (eds) Geomatics solutions for disaster management. Lecture notes in geoinformation and cartography. Springer Verlag, Berlin, pp 74–90Google Scholar
  16. Barlow J, Franklin S, Martin Y (2006) High spatial resolution satellite imagery. DEM derivatives, and image segmentation for the detection of mass wasting processes. Photogram Eng Remote Sens 72(6):687–692Google Scholar
  17. Barrett CB (2002) Food security and food assistance programs. In: Gardner B, Rausser G (eds) Handbook of agricultural economics, vol 2. Elsevier Science, Amsterdam, pp 2103–2190Google Scholar
  18. Becker M, Llowel W, Cazenave A, Güntner A, Crétaux J-F (2010) Recent hydrological behaviour of the East African Great Lakes region inferred from GRACE, satellite altimetry and rainfall observations. C R Geosci 342(3):223–233. doi: 10.1016/j.crte.2009.12.010 CrossRefGoogle Scholar
  19. Bill R (2011) Precise positioning in ad hoc geosensor newtorks. http://www.ikg.uni-hannover.de/geosensor/Lecture/Wednesday/Session1/sess1_bill.pdf. Accessed 22 Jan 2011
  20. Bitelli G, Camassi R, Gusella L, Mognol A (2004) Image change detection on urban areas: the earthquake case. In: Proceedings of the ISPRS XXth congress, Istanbul, vol 35(B7), pp 692–697Google Scholar
  21. Bonner MR, Han D, Nie J, Rogerson P, Vena JE (2003) Positional accuracy of geocoded addresses in epidemiologic research. Epidemiology 14:408–412. doi: 10.1097/01.EDE.0000073121.63254.c5 Google Scholar
  22. Born GH, Parke ME, Axelrad P, Gold KL, Johnson J, Key KW, Kubitschek DG, Christensen EJ (1994) Calibration of the TOPEX altimeter using a GPS buoy. J Geophys Res 99(C12):24517–24526Google Scholar
  23. Brenner C (2011) Geo sensor networks—when and how? http://dgk.auf.uni-rostock.de/uploads/media/2_2-Brenner.pdf. Accessed 22 Jan 2011
  24. Buehler YA, Kellenber TW (2007) Development of processing chains for rapid mapping with satellite data. In: Li J, Zlatanova S, Fabbri A (eds) Geomatics solutions for disaster management. Lecture Notes in Geoinformation and Cartography. Springer Verlag, Berlin, pp 16–36Google Scholar
  25. Chen JL, Wilson CR, Tapley BD, Yang ZL, Niu GY (2009) 2005 drought event in the Amazon River basin as measured by GRACE and estimated by climate models. J Geophys Res 114:B05404. doi: 10.1029/2008JB006056 CrossRefGoogle Scholar
  26. Church JA, Gregory JM, Huybrechts P, Kuhn M, Lambeck K, Nhuan MT, Qin D, Woodworth PL (2001) Changes in Sea Level. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, Van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis: contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 639–694Google Scholar
  27. Crétaux J-F, Jelinski W, Calmant S, Kouraev A, Vuglinski V, Bergé-Nguyen M, Gennero M-C, Nino F, Cazenave A, Maisongrande P (2011) SOLS: a lake database to monitor in the Near real-time water level and storage variations from remote sensing data. Adv Space Res 47:1497–1507. doi: 10.1016/j.asr.2011.01.004 CrossRefGoogle Scholar
  28. Crétaux J-F, Leblanc M, Tweed S, Calmant S, Ramillien G (2007) Combining of radar and laser altimetry, MODIS remote sensing and GPS for the monitoring of flood events: application to the flood plain of the Diamantina river. Geophysical Research Abstracts 9:07496. SRef-ID: 1607–7962/gra/EGU2007-A-07496Google Scholar
  29. Cruden D, Varnes D (1996) Landslide types and processes. In: Turner K, Schuster R (eds) Landslides investigation and mitigation, transportation research board special report 247. National Academy Press, Washington, pp 36–75Google Scholar
  30. Cruz A, Laneve G, Cerra D, Mielewczyk M, Garcia MJ, Santilli G, Cadau E, Joyanes G (2007) On the application of nighttime sensors for rapid detection of areas impacted by disasters. In: Li J, Zlatanova S, Fabbri A (eds) Geomatics solutions for disaster management. Lecture notes in geoinformation and cartography. Springer Verlag, Berlin, pp 16–36Google Scholar
  31. Dalton R (2007) GPS could offer better fault line mapping. Nature News. doi: 10.1038/news070521-9. http://www.nature.com/news/2007/070521/full/news070521-9.html. Accessed 25 Sept 2011
  32. Dickey JO, Bentley CR, Bilham R, Carton JA, Eanes RJ, Herring TA, Kaula WM, Lagerloef GSE, Rojstaczer S, Smith WHF, Van Den Dool HM, Wahr JM, Zuber MT (1996) Satellite gravity and the geosphere. National Research Council Report. National Academy Press, Washington, 112 ppGoogle Scholar
  33. DMCN (Drought Monitoring Centre Nairobi) (2002) Factoring of weather and climate information and products into disaster management policy. A contribution to strategies for disaster reduction in Kenya, UNDP, Government of Kenya and WMO, NairobiGoogle Scholar
  34. Forootan E, Awange J, Kusche J, Heck B (2012) Independent patterns of water mass anomalies over Australia from satellite data and models. Remote Sens Environ 124:427–443. doi: 10.1016/j.rse.2012.05.023 CrossRefGoogle Scholar
  35. Garcia-Garcia D, Ummenhofer CC, Zlotnicki V (2011) Australian water mass variations from GRACE data linked to Indo-Pacific climate variability. Remote Sens Environ 115:2175–2183. doi: 10.1016/j.rse.2011.04.007 CrossRefGoogle Scholar
  36. Geoscience Australia (2008) Need for the geodetic component for absolute sea level monitoring. http://www.ga.gov.au/geodesy/slm/spslcmp/. Accessed 11 Dec 2008
  37. Gili JA, Corominas J, Rius J (2000) Using global positioning techniques in landslide monitoring. Eng Geol 155(3):167–192CrossRefGoogle Scholar
  38. GITEWS (German Indonesian Tsunami Early Warning System) (2008) A new approach in Tsunami—early warning. Press-Information embargo: 11(11), 2008, 10.00 CET. http://www.gitews.de/fileadmin/documents/content/press/GITEWS_operationell_eng_nov-2008.pdf. Accessed 10 Dec 2008
  39. Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2010) The scientific value of high-rate, low-latency GPS data, a white paper. http://www.unavco.org/community_science/science_highlights/2010/ realtimeGPSWhitePaper2010.pdf [Accessed 06/06/11]
  40. Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2011) Scientific value of real-time Global Positioning System data. Eos 92(15):125–126. doi: 10.1029/2011EO150001 Google Scholar
  41. Hasegawa H, Yamazaki F, Matsuoka M, Seikimoto I (2000) Determination of building damage due to earthquakes using aerial television images. In: Proceedings of the 12th world conference on earthquake engineering, Auckland, CDROM, 8pGoogle Scholar
  42. Hatfield JL, Prueger JH, Kustas WP (2004) Remote sensing of dryland crops. In: Ustin S (ed) Remote sensing for natural resources and environmental monitoring: manual of remote sensing, vol 4, 3rd edn. Wiley, New Jersey, pp 531–568Google Scholar
  43. Hay SI, Lennon JJ (1999) Deriving meteorological variables across Africa for the study and control of vector-borne disease: a comparison of remote sensing and spatial interpolation of climate. Trop Med Int Health 4:58–71CrossRefGoogle Scholar
  44. Helm A, Montenbruck O, Ashjaee J, Yudanov S, Beyerle G, Stosius R, Rothacher M (2007) GORS—a GNSS occultation, reflectometry and scatterometry space receiver. In: Proceedings of the 20th international technical meeting of the satellite division of the institute of navigation ION GNSS 2007, Fort Worth, Texas, Sept 25–28, pp 2011–2021Google Scholar
  45. Herbreteau V, Salem G, Souris M (2007) Thirty years of use and improvement of remote sensing applied to epidemiology: from early promises to lasting frustration. Health Place 13:400–403CrossRefGoogle Scholar
  46. Hirt C, Gruber T, Featherstone WE (2011) Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights. J Geodesy 85:723–740, doi: 10.1007/s00190-011-0482-y Google Scholar
  47. Hofman-Wellenhof B, Lichtenegger H, Collins J (2001) Global positioning system: theory and practice, 5th edn. Springer, WienCrossRefGoogle Scholar
  48. Hofman-Wellenhof B, Lichtenegger H, Wasle E (2008) GNSS global navigation satellite system: GPS. GLONASS; Galileo and more. Springer, WienGoogle Scholar
  49. Istomina MN, Kocharyan AG, Lebedeva IP (2005) Floods: genesis, socioeconomic and environmental impacts. J Water Resour 32(4):349–358CrossRefGoogle Scholar
  50. James LF, Young JA, Sanders K (2003) A New approach to monitoring rangelands. Arid Land Res Manag 17:319–328. doi: 10.1080/15324980390225467 CrossRefGoogle Scholar
  51. Jayaraman V, Chandrasekhar MG, Rao UR (1997) Managing the natural disasters from space technology inputs. Elsevier Science Ltd, Great BritainGoogle Scholar
  52. Jeyaseelan AT (2004) Droughts and floods assessment and monitoring using remote sensing and GIS. In: Satellite remote sensing and GIS applications in agricultural meteorology, pp 291–313Google Scholar
  53. Jia M (2005) Crustal deformation from the Sumatra-Andaman Earthquake. Geoscience Australia’s analysis of the largest earthquake since the beginning of modern space geodesy. Ausgeo news, issue 80Google Scholar
  54. Kamik V, Algermissen ST (1978) Seismic Zoning—chapter in the assessment and mitigation of earthquake risk . UNESCO, Paris, pp 1–47Google Scholar
  55. Kelecy TM, Born GH, Parke ME, Rocken C (1994) Precise mean sea level measuring using global positioning system. J Geophys Res 99(c4):7951–7959Google Scholar
  56. Khandu J (2008) GPS remote sensing of the Australian tropopause. Honours dissertation, Curtin University of TechnologyGoogle Scholar
  57. Kouchi K, Yamazaki F, Kohiyama M, Matsuaka M, Muraoka N (2004) Damage detection from Quickbird high-resolution Satellite images for the 2003 Boumerdes. Algeria Earthquake. In: Proceeding of the Asian conference on earthquake engineering, Manila, Philippines, CD-ROM, pp 215–226Google Scholar
  58. Larson KM (2009) GPS seismology. J Geodesy 83:227–233. doi: 10.1007/s00190-008-0233-x CrossRefGoogle Scholar
  59. Leavitt WM, Kiefer JJ (2006) Infrastructure interdependency and the creation of a normal disaster: the case of Hurricane Katrina and the City of New Orleans. J Public Works Manag Policy 10(4):306–314CrossRefGoogle Scholar
  60. Leuliette EW, Nerem RS, Mitchum GT (2004) Calibration of TOPEX/Poseidon and Jason altimeter data to construct a continuous record of mean sea level change. Mar Geodesy 27(1):79–94. doi: 10.1080/01490410490465193 CrossRefGoogle Scholar
  61. Lian M, Warner RD, Alexander JL, Dixon KR (2007) Using geographic information systems and spatial and space-time scan statistics for a populationbased risk analysis of the 2002 equine West Nile epidemic in six contiguous regions of Texas. Int J Health Geogr 6:42. www.ij-healthgeographics.com/content/6/1/42
  62. Lowe ST, LaBrecque JL, Zuffada C, Romans LJ, Young L, Hajj GA (2002) First spaceborne observation of an earth-reflected GPS signal. Radio Science 37(1):1007, doi: 10.1029/2000RS002539 Google Scholar
  63. Malamud B, Turcotte D, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Proc Land 29:687–711CrossRefGoogle Scholar
  64. Malet JP, Maquaire O, Calais E (2002) The use of global positioning system techniques for the continuous monitoring of landslides: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology 43(1–2):33–54. doi: 10.1016/S0169-555X(01)00098-8 CrossRefGoogle Scholar
  65. Matsuzaka S (2006) GPS network experience in japan and its usefulness. In: Seventeenth United Nations regional cartographic conference, Geographical Survey Institute, BangkokGoogle Scholar
  66. McKean J, Buechel S, Gaydos L (1991) Remote sensing and landslide hazard assessment. Photogram Eng Remote Sens 57(9):1185–1193Google Scholar
  67. Mehdi R, Gruen A (2007) Automatic classification of collapsed buildings using object and image space features. In: Li J, Zlatanova S, Fabbri A (eds) Geomatics solutions for disaster management. Lecture notes in geoinformation and cartography. Springer Verlag, Berlin, pp 135–148Google Scholar
  68. Mitrovica JX, Tamisiea ME, Davis JL, Milne GA (2001) Recent mass balance of polar ice sheets inferred from patterns of global sea-level change. Nature 409:1026–1029. doi: 10.1038/35059054 CrossRefGoogle Scholar
  69. Miura H, Midorikawa S (2006) Updating GIS building inventory data using high-resolution satellite images for earthquake damage assessment: application to metro Manila, Philippines. Earthq Spectra 22:151–168CrossRefGoogle Scholar
  70. Motagh M, Djamour Y, Walter TR, Wetze H, Zschau J, Arabi S (2007) Land subsidence in Mashhad Valley, northeast Iran: results from InSAR, levelling and GPS. Geophys J Int 168:518–526. doi: 10.1111/j.1365-246X.2006.03246.x CrossRefGoogle Scholar
  71. Nicholson SE, Davenport ML, Malo AR (1990) A comparison of the vegetation response to rainfall in the Sahel and East Africa, using normalized difference vegetation index from NOAA AVHRR. Clim Change 17(2–3):209–241. doi: 10.1007/BF00138369 CrossRefGoogle Scholar
  72. Nittel S, Labrinidis A, Stefanidis A (eds) (2008) GeoSensor networks. Lecture notes in computer science 4540. Springer, Berlin, pp 1–6Google Scholar
  73. Nittel S, Stefanidis A, Cruz I, Egenhofer M, Goldin D, Howard A, Labrinidis A, Madden S, Voisard A, Worboys M (2004) Report from the first workshop on Geo Sensor Networks. ACM SIGMOD Rec 33(1):141–144Google Scholar
  74. Ogawa N, Yamazaki F (2000) Photo-interpretation of buildings damage due to earthquakes using aerial photographs. In: Proceedings of the 12th world conference on earthquake engineering, Auckland, CD-ROM, 8pGoogle Scholar
  75. Omute P, Corner R, Awange JL (submitted) NDVI monitoring of Lake Victoria water level and drought. Water Resource ManagementGoogle Scholar
  76. Phoon SY, Shamseldin AY, Vairavamoorthy K (2004) Assessing impacts of climate change on Lake Victoria Basin, Africa: people-centred approaches to water and environmental sanitation. In: International Conference on 30th water engineering and development centre (WEDC), Vientiane, Lao PDR, pp 392–397Google Scholar
  77. Poland JF (1984) Guidebook to studies of land subsidence due to water withdrawal. UNESCO, Technical reportGoogle Scholar
  78. Privette JL, Fowler C, Wick GA, Baldwin D, Emery WJ (1995) Effects of orbirtal drift on advanced very high resolution radiometer products: normalized difference vegetation index and sea surface temperature. Remote Sens Environ 53(3):164–171. doi: 10.1016/0034-4257(95)00083-D CrossRefGoogle Scholar
  79. Pugh D (2004) Changing sea levels. Effect of tides, weather and climate. Cambridge Univeristy Press, CambridgeGoogle Scholar
  80. Rius A, Aparicio JM, Cardellach E, Martín-Neira M, Chapron B (2002) Sea surface state measured using GPS reflected signals. Geophys Res Lett 29(23):21–22. doi: 10.1029/2002GL015524 CrossRefGoogle Scholar
  81. Rocken C, Kelecy TM, Born GH, Young LE, Purcell GH, Wolf SK (1990) Measuring precise sea level from a buoy using the global positioning system. Geophys Res Lett 17(12):2145–2148CrossRefGoogle Scholar
  82. Rood K (1984) An aerial photograph inventory of the frequency and yield of mass wasting on the Queen Charlotte Islands. British Columbia, BC Ministry of Forests, Land Management Report 34Google Scholar
  83. Sagiya T (2005) A decade of GEONET: 1994–2003 the continuous GPS observation in Japan and its impact on earthquake studies. Earth Planets Space 56:xxix–xliGoogle Scholar
  84. Sauchyn D, Trench N (1978) Landsat applied to landslide mapping. Photogram Eng Remote Sens 44:735–741Google Scholar
  85. Schenk A (2006) Interpreting surface displacement in Tehran/Iran region observed by differential synthetic aperture radar interferometry (DINSAR). Diplomarbeit, Technische Universität Berlin, Institut für Angewandte Geowissenschaften Fachgebiet Angewandte GeophysikGoogle Scholar
  86. Scofield RA, Achutuni R (1996) The satellite forecasting funnel approach for predicting flash floods. Remote Sens Rev 14:251–282CrossRefGoogle Scholar
  87. Seidel DJ, Randel WJ (2006) Variability and trends in the global tropopause estimated from radiosonde data. J Geophys Res 111. doi: 10.1029/2006JD007363
  88. Snay R, Cline M, Dillinger W, Foote R, Hilla S, Kass W, Ray J, Rohde J, Sella G, Soler T (2007) Using global positioning system-derived crustal velocities to estimate rates of absolute sea level change from North American tide gauge records. J Geophys Res 112:B04409. doi: 10.1029/2006JB004606 CrossRefGoogle Scholar
  89. Snay R, Soler T (2008) Continuously operating reference station (CORS): history, applications, and future enhancements. J Surv Eng 134(4):95–104. doi: 10.1061/(ASCE)0733-9453(2008)134:4(95) CrossRefGoogle Scholar
  90. Snow J (2010) GIS analyses of Dr. Snow’s Map. http://www.udel.edu/johnmack/frec480/cholera/cholera2.html. Accessed on 02 April 2010
  91. Steede-Terry K (2000) Integrating GIS and the global positioning system. ESRI Press, CaliforniaGoogle Scholar
  92. Stefanidis A (2006) The emergence of geoSensor networks. Directions Magazine. http://www.directionsmag.com/articles/the-emergence-of-geosensor-networks/123208. Accessed 22 Jan 2011
  93. Terhorst A, Moodley D, ISimonis I, Frost P, McFerren G, Roos S, van den Bergh F (2008) Using the sensor web to detect and monitor the spread of vegetation fires in southern Africa. In: Nittel S, Labrinidis A, Stefanidis A (eds) GeoSensor networks. Lecture notes in computer science 4540. Springer, Berlin, pp 239–251Google Scholar
  94. Titus JG, Park RA, Leatherman S, Weggel R, Greene MS, Treehan M, Brown S, Gaunt C, Yohe G (1991) Greenhouse effect and sea level rise: the cost of holding back the sea. Coast Manag 19:171–204CrossRefGoogle Scholar
  95. Trenberth K, Guillemot C (1996) Evaluation of the atmospheric moisture and hydrological cycle in the NCEP Reanalyses. NCAR Technical Note TN-430Google Scholar
  96. Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777CrossRefGoogle Scholar
  97. Turker M, Cetinkaya B (2005) Automatic detection of earthquake-damaged buildings using DEMs created from pre- and post-earthquake stereo aerial photographs. Int J Remote Sens 26(4):823–832CrossRefGoogle Scholar
  98. Ummenhofer C, England M, McIntosh P, Meyers G, Pook M, Risbey J, Gupta A, Taschetto A (2009) What causes southeast Australiaś worst droughts? Geophys Res Lett 36:L04706. doi: 10.1029/2008GL036801 CrossRefGoogle Scholar
  99. Uriel K (1998) Landscape ecology and epidemiology of vector-borne diseases: tools for spatial analysis. J Med Entomol 35(4):435–445Google Scholar
  100. US Army Corps of Engineers (2007) NAVSTAR global positioning system surveying. Engineering and Design Manual, EM 1110-1-1003Google Scholar
  101. Voigt S, Riedlinger T, Reinartz P, Knzer C, Kiefl R, Kemper T, Mehl H (2005) Experience and perspective of providing satellite based crisis information, emergency mapping & disaster monitoring information to decision makers and relief workers. In: Zlatanova S, Fendel E, van Oosterom P (eds) Geoinformation for disaster management. Springer, Berlin, pp 519–531Google Scholar
  102. Warrick RA, Le Provost C, Meier MF, Oerlemans J, Woodworth PL (1996) Changes in sea level. In: Houghton JT, Meira Filho LG, Callander BA, Harris N, Klattenberg A, Maskell K (eds) Climate change 1995. The science of climate change. Cambridge University Press, Cambridge, pp 359–405Google Scholar
  103. Watson C, Coleman R, White N, Church J, Govind R (2003) Absolute calibration of TOPEX/Poseidon and Jason-1 Using GPS Buoys in Bass Strait, Australia. Mar Geodesy 26(3–4):285–304. doi: 10.1080/01490410390256745 CrossRefGoogle Scholar
  104. Webster TL, Forbes DL, Dickie S, Shreenan R (2004) Using topographic LiDAR to map flood risk from storm-surge events for Charlottetown, Prince Edward Island, Canada. Can J Remote Sens 30:64–76CrossRefGoogle Scholar
  105. Wills C, McCrink T (2002) Comparing landslide inventories: the map depends on the method. Environ Eng Geosci VIII 4:279–293Google Scholar
  106. Wisner B, Blaikie P, Cannon T, Davis I (2004) At risk—natural hazards, people’s vulnerability and disasters. Routledge, WiltshireGoogle Scholar
  107. Worboys M, Duckham M (2006) Monitoring qualitative spatiotemporal change for geosensor networks. Int J Geogr Inf Sci 20(10):1087–1108. doi: 10.1080/13658810600852180 CrossRefGoogle Scholar
  108. Xue Z, Li G, Li Z, Wu X, Wei J (2007) Monitoring Xian land subsidence evolution by differential SAR interferometry. In: Li J, Zlatanova S, Fabbri A (eds) Geomatics solutions for disaster management. Lecture notes in geoinformation and cartography. Springer Verlag, Berlin, pp 427–437Google Scholar
  109. Yamaguchi N, Yamazaki F (2001) Estimation of strong motion distribution in the 1995 Kobe earthquake based on building damage data. Earthq Eng Struct Dynam 30(6):787–801CrossRefGoogle Scholar
  110. Yamazaki F, Kouchi K, Kohiyama M, Muraoka N, Matsuoka M (2004) Earthquake damage detection using high-resolution satellite images. In: Proceedings of IEEE 200 international geoscience and remote sensing symposium, IEEE, CD-ROM, 4pGoogle Scholar
  111. Yamazaki F, Yano Y, Matsuoka M (2005) Visual damage interpretation of buildings in Bam City using QuickBird images. Earthq Spectra 21(1):329–336CrossRefGoogle Scholar
  112. Zhang Q, Zhao C, Ding X, Peng J (2007) Monitoring Xian land subsidence evolution by differential SAR interferometry. In: Li J, Zlatanova S, Fabbri A (eds) Geomatics solutions for disaster management. Lecture notes in geoinformation and cartography. Springer Verlag, Berlin, pp 91–102Google Scholar
  113. Zhanga J, Zhoub C, Xua K, Watanabe M (2002) Flood disaster monitoring and evaluation in China. Environ Hazards 4:33–43. doi: 10.1016/S1464-2867(03)00002-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Spatial SciencesCurtin University of TechnologyPerthAustralia
  2. 2.Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Kyoto UniversityKyotoJapan
  4. 4.School of EnvironmentMaseno UniversityKisumuKenya
  5. 5.Geospatial and Space TechnologyUniversity of NairobiNairobiKenya

Personalised recommendations