Advertisement

Water Resources

  • Joseph L. AwangeEmail author
  • John B. Kyalo Kiema
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Fresh water is one of the basic necessities without which human beings cannot survive since water is key to the sustainability of all kinds of lifeforms. Water has multiple uses namely; nutritional, domestic, recreational, navigational, waste disposal and ecological as it is a habitat for living and non-living organisms (biodiversity) etc. And, because it is indispensable to different sectors including manufacturing, agriculture, fisheries, wildlife survival, tourism and hydroelectric power generation, it is a vital factor of economic production. For many countries, most freshwater endowments encompass surface waters, groundwater, wetlands and glaciers.

Keywords

Gravity Field Indian Ocean Dipole Super Conducting Gravimeter Global Land Data Assimilation System Nile Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abiya IO (1996) Towards sustainable utilization of lake Naivasha, Kenya. Lakes Reserv Res Manag 2(3–4):231–242. doi: 10.1111/j.1440-1770.1996.tb00067.x CrossRefGoogle Scholar
  2. Andersen OB, Seneviratne SI, Hinderer J, Viterbo P (2005) GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave. Geophys Res Lett 32(L18405):2–5. doi: 10.1029/2005GL023574 Google Scholar
  3. Awange JL (2012) Environmental monitoring using GNSS, global navigation satellite system. Springer, BerlinGoogle Scholar
  4. Awange JL, Forootan E, Fleming KM, Kiema JBK, Ohanya S, Heck B (2013) Understanding the decline of Lake Naivasha using satellite-based methods. Adv Water Res (in press)Google Scholar
  5. Awange JL, Fleming KM, Kuhn M, Featherstone WE, Heck B, Anjasmara I (2011) On the suitability of the 4\(^\circ \) \(\times \) 4\(^\circ \) GRACE mascon solutions for remote sensing Australian hydrology. Remote Sens Environ 115:864–875. doi:  10.1016/j.rse.2010.11.014 CrossRefGoogle Scholar
  6. Awange JL, Sharifi MA, Baur O, Keller W, Featherstone WE, Kuhn M (2009) GRACE hydrological monitoring of Australia. Current limitations and future prospects. J Spat Sci 54(1):23–36. doi: 10.1080/14498596.2009.9635164 CrossRefGoogle Scholar
  7. Awange JL, Sharifi M, Ogonda G, Wickert J, Grafarend EW, Omulo M (2008) The Falling Lake Victoria Water Level: GRACE. TRIMM and CHAMP Satellite Analysis. Water Res Manag. doi: 10.1007/s11269-007-9191-y
  8. Awange JL, Ong’ang’a O(2006) Lake Victoria-ecology, resource of the Lake Basin and environment. Springer, BerlinGoogle Scholar
  9. Becht R (2007) Environmental effects of the floricultural industry on the Lake Naivasha Basin. ITC, NetherlandsGoogle Scholar
  10. Becht R, Odada EO, Higgins S (2005) Lake Naivasha : experience and lessons learned brief. In: Lake basin management initiative: experience and lessons learned briefs. including the final report: Managing lakes and basins for sustainable use, a report for lake basin managers and stakeholders. Kusatsu : International Lake Environment Committe Foundation (ILEC) 2005:277–298Google Scholar
  11. Becht R, Haper DM (2002) Towards an understanding of human impact upon the hydrology of Lake Naivasha, Kenya. Hydrobiologia 488(1–3):1–11. doi: 10.1023/A:1023318007715 Google Scholar
  12. Becker M, Llowel W, Cazenave A, Güntner A, Crétaux J-F (2010) Recent hydrological behaviour of the East African Great Lakes region inferred from GRACE, satellite altimetry and rainfall observations. Comptes Rendus Geosci 342(3):223–233. doi: 10.1016/j.crte.2009.12.010 CrossRefGoogle Scholar
  13. Bettadpur S (2007) UTCSR Level-2 Processing Standards Document for Level-2 Product Release 0004. Gravity Recovery and Climate Experiment (GRACE) Rev 3.1, GRACE 327–742 (CSR-GR-03-03). Center for Space Research, The University of Texas at Austin.Google Scholar
  14. Beyene T, Lettenmaier DP, Kabat P (2010) Hydrologic impacts of climate change on the Nile River Basin: implications of the 2007 IPCC scenarios. Clim Change 100:433–461. doi: 10.1007/s10584-009-9693-0 CrossRefGoogle Scholar
  15. Birnie P, Boyle A (1993) International law & the environment. Camb law J 52(3):540 (Cambridge university press)Google Scholar
  16. Bonsor HC, Mansour MM, MacDonald AM, Hughes AG, Hipkin RG, Bedada T (2010) Interpretation of GRACE data of the Nile Basin using a groundwater recharge model. Hydrol Earth Syst Sci Discuss 7:4501–4533. doi: 10.5194/hessd-7-4501-2010 CrossRefGoogle Scholar
  17. Bower DR, Courtier N (1998) Precipitation effects on gravity measurements at the Canadian absolute gravity site. Phys Earth Planet Inter 106:353–369CrossRefGoogle Scholar
  18. Brutsaert W (2005) Hydrology. An introduction, 4th edn. Cambridge University Press, New YorkGoogle Scholar
  19. Carolina BF (2002) Competition over water resources: analysis and mapping of water-related conflicts in the catchment of Lake Naivasha (Kenya). MSc thesis, ITCGoogle Scholar
  20. Casanova MT (1994) Vegetative and reproductive responses of charophytes to water-level fluctuations in permanent and temporary wetlands in Australia. Aust J Mar Freshw Res 45:1409–1419CrossRefGoogle Scholar
  21. Conway D (2005) From headwater tributaries to international river: observing and adapting to climate variability and change in the Nile Basin. Global Environ Change 15:99–114. doi: 10.1016/j.gloenvcha.2005.01.003 CrossRefGoogle Scholar
  22. Crowley JW, Mitrovica JX, Bailey RC, Tamisiea ME, Davis JL (2006) Land water storage within the Congo Basin inferred from GRACE satellite gravity data. Geophys Res Lett 33:L19402. doi: 10.1029/2006GL027070 CrossRefGoogle Scholar
  23. Damiata BN, Lee TC (2002) Gravitational attraction of solids of revolution—part1: vertical circular cylinder with radial variation of density. J Appl Geophys 50(3):333–349. doi: 10.1016/S0926-9851(02)00151-9 CrossRefGoogle Scholar
  24. Darling W, Allen D, Armannsson H (1990) Indirect detection of subsurface outflow from a rift valley lake. J Hydrol 113(1–4):297–306CrossRefGoogle Scholar
  25. Ellett KM, Walker JP, Western AW, Rodell M (2006) A framework for assessing the potential of remote sensed gravity to provide new insight on the hydrology of the Murray-Darling Basin. Aust Water Resour 10(2):89–101Google Scholar
  26. Ellett KM, Walker JP, Rodell M, Chen JL, Western AW (2005), GRACE gravity fields as a new measure for assessing large-scale hydrological models. In: Zerger A, Argent RM (ed) MODSIM 2005 international congress on modelling and simulation society of Australia and NewZeland, December 2005, pp. 2911–2917. ISBN: 0-9758400-2-9Google Scholar
  27. Everard M, Harper DM (2002) Towards the sustainability of the Lake Naivasha Ramsar site and its catchment. Hydrobiologia 488(1–3):191–203. doi: 10.1023/A:1023390430571 CrossRefGoogle Scholar
  28. Everard M, Vale JA, Harper DM, Tarras-Wahlberg H (2002) The physical attributes of the Lake Naivasha catchment rivers. Hydrobiologia 488(1–3):13–25. doi: 10.1023/A:1023349724553 CrossRefGoogle Scholar
  29. Forootan E, Kusche J (2011) Separation of climate-driven signals in time-variable gravity using independent component analysis (ICA). J Geodesy 86:477–497. doi: 10.1007/s00190-011-0532-5 CrossRefGoogle Scholar
  30. Forootan E, Awange J, Kusche J, Heck B, Eicker A (2012) Independent patterns of water mass anomalies over Australia from satellite data and models. Remote Sens Environ 124:427–443. doi: 10.1016/j.rse.2012.05.023 CrossRefGoogle Scholar
  31. Garcia-Garcia D, Ummenhofer CC, Zlotnicki V (2011) Australian water mass variations from GRACE data linked to Indo-Pacific climate variability. Remote Sens Environ 115:2175–2183. doi: 10.1016/j.rse.2011.04.007 CrossRefGoogle Scholar
  32. Gleick PH (1999) The human right to water. Water Policy 1:487–503CrossRefGoogle Scholar
  33. Goodkind JM (1986) Continuous measurement of nontidal variations of gravity. J Geophys Res 91(B9): 9125–9134Google Scholar
  34. Hamouda MA, Nour El-Din MN (2009) Vulnerability assessment of water resources systems in the Eastern Nile Basin. Water Resour Manag 23:2697–2725. doi: 10.1007/s11269-009-9404-7 CrossRefGoogle Scholar
  35. Harper DM, Mavuti KM, Muchiri SM (1990) Ecology and management of Lake Naivasha, Kenya, in relation to climatic change, alien species’ introductions, and agricultural development. Environ Conserv 17(04):328–336CrossRefGoogle Scholar
  36. Hofman AR (2004) The connection: water and energy security. http://www.iags.org/n0813043.htm. Accessed 25 August 2010
  37. IPCC (Intergovernmental Panel on Climate Change) (2007), Contribution of Working Group I to the Fourth Assessment ReportGoogle Scholar
  38. ILEC (International Lake Environment Committee) (2005) Managing lakes and their basins for sustainable use. A report for the lake basin managers and stakeholders, International Lakes Environmental Committee Foundation, Kusatsu, JapanGoogle Scholar
  39. IRIN humanitarian news and analysis, UN office for coordination of humanitarian affairs (2006). Global: The global water crisis: managing a dwindling resource. http://www.irinews.org. Accessed 25 Sept 2011
  40. Johnson LE (2009) Geographic information systems in water resources engineering. CRC Press Taylor Francis Group, Boca Raton. ISBN 978-1-4200-6913-6Google Scholar
  41. Jury WA, Vaux HJ Jr (2007). The emerging global water crisis: managing scarcity and conflict between water users. Advances in agronomy, Elsevier Inc., vol 95, p 77. doi: 10.1016/50065-2113(07)95001-4
  42. Kayombo S, Jorgensen SE (2006) Lake Victoria: experience and lessons learned brief. International Lake Environment Committee, Lake Basin Management Initiative, Kusatsu, Japan. http://www.ilec.or.jp/eg/lbmi/reports/27_Lake_Victoria_27February2006.pdf. Accessed 25 Sept 2011
  43. KFC (Kenya Flower Council) (2011) Kenya Flower Council. http://www.kenyaflowercouncil.org. Accessed 25 July 2010
  44. Kull D (2006) Connections between recent water level drops in Lake Victoria, dam operations and drought. http://www.irn.org/programs/nile/pdf/060208vic.pdf. Accessed 25 Sept 2011
  45. Lambert A, Beaumont C (1977) Nano variation in gravity due to seasonal groundwater movements: implications for the gravitational detection of tectonic movements. J Geophys Res 82(2): 297–306Google Scholar
  46. Leblanc M, Tregoning P, Ramillien G, Tweed S, Fakes A (2009) Basin-scale, integrated observations of the early 21st century multiyear drought in southeast Australia. Water Resour Res 45:W04408. doi: 10.1029/2008WR007333 CrossRefGoogle Scholar
  47. Leick A (2004) GPS satellite surveying, 3rd edn. Wiley, New YorkGoogle Scholar
  48. Leirião S, He X, Christiansen L, Andersen OB, Bauer-Gottwein P (2009) Calculation of the temporal gravity variation from spatially variable water storage change in soils and aquifers. J Hydrol 365:302–309CrossRefGoogle Scholar
  49. Mekonnen MM, Hoekstra AY (2010) Mitigating the water footprint of export cut flowers from the Lake Naivasha Basin, Kenya. Value of Water Research Report Series No. 45, UNESCO-IHE, Delft, The NetherlandsGoogle Scholar
  50. Molen I, Hildering A (2005) Water: cause for conflict or co-operation? ISYP J Sci World Aff 1(2):133–143Google Scholar
  51. Montgomery EL (1971) Determination of coefficient of storage by use of gravity measurements. Ph.D. Thesis, University of Arizona, TucsonGoogle Scholar
  52. Mukai A, Higashi T, Takemoto S, Nakagawa I, Naito I (1995) Accurate estimation of atmospheric effects on gravity observations made with a superconducting gravity meter at Kyoto. Phys Earth Planet Inter 91(1–3):149–159CrossRefGoogle Scholar
  53. Neumeyer J, Barthelmes F, Dierks O, Flechtner F, Harnisch M, Harnisch G, Hinderer J, Imanishi Y, Kroner C, Meurers B, Petrovic S, Reigber C, Schmidt R, Schwintzer P, Sun HP, Virtanen H (2006) Combination of temporal gravity variations resulting from superconducting gravimeter (SG)recordings, GRACE satellite observations and global hydrology models. J Geodesy 79(10–11):573–585. doi: 10.1007/s00190-005-0014-8 CrossRefGoogle Scholar
  54. Nicholson SE (1998) Historical fluctuations of Lake Victoria and other lakes in the Northern Rift Valley of East Africa. In: Lehman JT (ed) Environmental change and response in East African lakes. Kluwer, Dordrecht, pp 7–35CrossRefGoogle Scholar
  55. Nicholson SE (1999) Historical and modern fluctuations of lakes Tanganyika and Rukwa and their relationship to rainfall variability. Clima Change 41:53–71. doi: 10.1023/A:1005424619718 CrossRefGoogle Scholar
  56. NLWRA (National Land and Water Resource Audit) (2001) Water resources in Australia. A summary of the National Land and Water Resource Audit’s Australian water resources assessment 2000. Surface water and groundwater—availability and qualityGoogle Scholar
  57. Owor M, Taylor RG, Tindimugaya C, Mwesigwa D (2009) Rainfall intensity and groundwater recharge: empirical evidence from the Upper Nile Basin. Environ Res Lett 4:035009. doi: 10.1088/1748-9326/4/3/035009 CrossRefGoogle Scholar
  58. Pool DR, Eychaner JH (1995) Measurements of aquifer-storage change and specific yield using gravity surveys. Ground Water 33(3):425–432CrossRefGoogle Scholar
  59. Ramillien G, Cazenave A, Brunau O (2004) Global time variations of hydrological signals from GRACE satellite gravimetry.Geophys J Int 158(3): 813–826. doi: 10.1111/j.1365-246X.2004.02328.x Google Scholar
  60. Ramillien G, Frappart F, Cazenave A, Gntner A (2005) Time variations of land water storage from an inversion of two years of GRACE geoids [rapid communication]. Earth Planet Sci Lett 235(1–2):283–301. doi: 10.1016/j.epsl.2005.04.005 CrossRefGoogle Scholar
  61. Rekacewicz P (2006) Increased global water stress. Vital water graphics 2. Le monde diplomatique. http://www.grida.no/publications/vg/water2/page/3289.aspx. Accessed 15 April 2012
  62. Richardson JL, Richardson AE (1972) History of an African rift lake and its climatic implications. Ecol Monogr 42(4):499–534. doi: 10.2307/1942169 CrossRefGoogle Scholar
  63. Rijsberman FR (2006) Water scarcity: fact or fiction. Agric Water Manag 80:522Google Scholar
  64. Rieser D, Kuhn M (2010) Relation between GRACE-derived surface mass variations and precipitation over Australia. Aust J Earth Sci 57(7):887–900. doi: 10.1080/08120099.2010.512645 CrossRefGoogle Scholar
  65. Rodell M, Chen J, Kato H, Famiglietti JS, Nigro J, Wilson CR (2006) Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol J 15(1):159–166. doi: 10.1007/s10040-006-0103-7 CrossRefGoogle Scholar
  66. Rodell M, Famiglietti JS, Chen J, Seneviratne SI, Viterbo P, Holl S, Wilson CR (2004) Basin scale estimates of evapotranspiration using GRACE and other observations. Geophys Res Lett 31:L20504. doi: 10.1029/2004GL020873 CrossRefGoogle Scholar
  67. Rodell M, Famiglietti JS (1999) Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Resour Res 35(9):2705–2724. doi: 10.1029/1999WR900141 CrossRefGoogle Scholar
  68. Sahin M (1985) Hydrology of the Nile Basin. Developments in water science, vol 21. Elsevier, New York, p 575Google Scholar
  69. Sansome HW (1952) The trend of rainfall in East Africa. E. Afr. Meteorol. Dep., Tech. Mem. 1, 14 pGoogle Scholar
  70. Schmidt R, Schwintzer P, Flechtner F, Reigber C, Güntner A, Döll P, Ramillien G, Cazenave A, Petrovic S, Jochmann H, Wünsch J (2006b) GRACE observations of changes in continental water storage. Global and Planet Change 50(1–2):112–126. doi: 10.1016/j.gloplacha.2004.11.018 CrossRefGoogle Scholar
  71. Senay GB, Asante K, Artan G (2009) Water balance dynamics in the Nile Basin. Hydrol Process 23:3675–3681. doi: 10.1002/hyp.7364 Google Scholar
  72. Schelton D (1991) Human rights, environmental rights, and the right to environment, 28 Stan. Journal of International Law, HeinonlineGoogle Scholar
  73. Smith AB, Walker JP, Western AW, Ellett KM (2005) Using ground based measurements to monitor changes in teresstrial water storage. 29th Hydrology and water resources symposium (CD Rom), Institute of Engineers AustraliaGoogle Scholar
  74. Steffen W, Sanderson A, Tyson PD, Jger J, Matson PA, Moore BIII, Oldfield F, Richardson K, Schellnhuber HJ, Turner BLII, Wasson RJ (2005) Global change and the earth system: a planet under pressure. Springer, BerlinGoogle Scholar
  75. Swenson S, Wahr J (2009) Monitoring the water balance of Lake Victoria, East Africa, from space. J Hydrol 370:163–176. doi: 10.1016/j.jhydrol.2009.03.008 CrossRefGoogle Scholar
  76. Swenson S, Wahr J, Milly PCD (2003) Estimated accuracies of regional water storage variations inferred from the gravity recovery and climate experiment (GRACE). Water Resour Res 39(8):1223. doi: 10.1029/2002WR001736 CrossRefGoogle Scholar
  77. Swenson S, Yeh PJ-F, Wahr J, Famiglietti J (2006) A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois. Geophys Res Lett 33:L16401. doi: 10.1029/2006GL026962 CrossRefGoogle Scholar
  78. Syed T, Famiglietti J, Rodell M, Chen J, Wilson C (2008) Total basin discharge for the Amazon and Mississippi River basins from GRACE and a land-atmosphere water balance. Water Resour Res 44:W02433. doi: 10.1029/2006WR005779 CrossRefGoogle Scholar
  79. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the Earth system. Science 305:503–505. doi: 10.1126/science.1099192 CrossRefGoogle Scholar
  80. Taylor CJ, Alley WM (2001) Ground-water-level monitoring and the importance of long-term water-level data. U.S. Geological Survey Circular 1217, Denver, ColoradoGoogle Scholar
  81. Ummenhofer C, England M, McIntosh P, Meyers G, Pook M, Risbey J, Gupta A, Taschetto A (2009) What causes southeast Australiaś worst droughts? Geophys Res Lett 36:L04706. doi: 10.1029/2008GL036801 CrossRefGoogle Scholar
  82. UNEP (2002) A world of salt: total global saltwater and freshwater Estimates. http://www.unep.org/dewa/assessments/ecosystems/water/vitalwater/freshwater.htm. Accessed 25 Aug 2010
  83. Vincent CE, Davies TD, Beresford UC (1979) Recent changes in the level of Lake Naivasha, Kenya, as an indicator of equatorial westerlies over East Africa. Clim Change 2(2):175–189. doi: 10.1007/BF00133223 CrossRefGoogle Scholar
  84. World Bank (2003) Water resource and environment. Davis R, Hirji R (eds). Technical Note G.2, Lake ManagementGoogle Scholar
  85. Whittington D, McClelland E (1992) Opportunities for regional and international cooperation in the Nile Basin. Water Int 17(3):144–154. doi: 10.1080/02508069208686134 CrossRefGoogle Scholar
  86. Winsemius HC, Savenije HHG, van de Giesen NC, van den Hurk B, Zapreeva EA, Klees R (2006) Assessment of gravity recovery and climate experiment (GRACE) temporal signature over the upper Zambezi. Water Resour Res 42:W12201. doi: 10.1029/2006WR005192 CrossRefGoogle Scholar
  87. Yan JP, Hinderer M, Einsele G (2002) Geochemical evolution of closed-basin lakes: general model and application to Lakes Qinghai and Turkana. Sediment Geol 148(1–2):105–122. doi: 10.1016/S0037-0738(01)00212-3 CrossRefGoogle Scholar
  88. Yates DN, Strzepek KM (1998) Modelling the Nile Basin under climate change. J Hydrol Eng 3(2):98–108. doi: 10.1061/(ASCE)1084-0699(1998)3:2(98) CrossRefGoogle Scholar
  89. Zehnder AJB, Yang H, Schertenleib R (2003) Water issues: the need for action at different levels. Acquatic Sci Res Across Boundaries. 65(1):1–20. doi: 10.1007/s000270300000 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Spatial SciencesCurtin University of TechnologyPerthAustralia
  2. 2.Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Kyoto UniversityKyotoJapan
  4. 4.School of EnvironmentMaseno UniversityKisumuKenya
  5. 5.Geospatial and Space TechnologyUniversity of NairobiNairobiKenya

Personalised recommendations