Advertisement

Satellite Environmental Sensing

  • Joseph L. AwangeEmail author
  • John B. Kyalo Kiema
Chapter
Part of the Environmental Science and Engineering book series (ESE)

Abstract

GNSS satellites such as GPS are playing an increasingly crucial role in tracking low earth orbiting (LEO) remote sensing satellites at altitudes below 3000 km with accuracies of better than 10 cm  (Yunck et al. 1990). These remote sensing satellites employ a precise global network of GNSS, GRACE (Gravity Recovery And Climate Experiment) and Altimetry ground receivers operating in concert with receivers onboard the LEO satellites, with all estimating the satellites’ orbits, GPS orbits, and selected ground locations simultaneously (Yunck et al. 1990). In this chapter, we illustrate the role played by GNSS satellites in measuring changes in the Earth’s atmosphere, its gravity field, and surfaces (e.g., ice layer density). These changes are found by measuring refractivity, inter-satellite distances, and reflected signals (i.e., multipath), respectively.

Keywords

Total Electronic Content Gravity Field Precipitable Water Vapour Integrate Water Vapour GNSS Receiver 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abdalati W, Zwally HJ, Bindschadler B, Csatho B, Farrell SL, Fricker HA, Harding D, Kwok R, Lefsky M, Markus T, Marshak A, Neumann T, Palm S, Schutz B, Smith B, Spinhirne J, Webb C (2010) The ICESat-2 laser altimetry mission. Proc IEEE 98(5):735–751. doi: 10.1109/JPROC.2009.2034765 Google Scholar
  2. Anthes RA, Bernhardt PA, Chen Y, Cucurull L, Dymond KF, Ector D, Healy SB, Ho SP, Hunt DC, Kuo YH, Liu H, Manning K, McCormick C, Meehan TK, Randel WJ, Rocken C, Schreiner WS, Sokolovskiy SV, Syndergaard S, Thompson DC, Trenberth KE, Wee TK, Yen NL, Zeng Z (2008) The COSMIC/FORMOSAT-3 mission: early results. Bull Am Meteorol Soc 89(3):313–333Google Scholar
  3. Anthes RA (2004) Application of GPS remote sensing to meteorology and related fields. J Meteorol Soc Jpn 82(18):259–596Google Scholar
  4. Arras C, Jacobi C, Wickert J, Heise S, Schmidt T (2010) Sporadic E signatures revealed from multi-satellite radio occultation measurements. Adv Radio Sci 8:225–230. doi: 10.5194/ars-8-225-2010 CrossRefGoogle Scholar
  5. Askne J, Nordius H (1987) Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci 22:379–386CrossRefGoogle Scholar
  6. Awange JL, Sharifi MA, Baur O, Keller W, Featherstone WE, Kuhn M (2009) GRACE hydrological monitoring of Australia. Current limitations and future prospects. J Spatial Sci 54(1):23–36. doi: 10.1080/14498596.2009.9635164 CrossRefGoogle Scholar
  7. Awange JL (2012) Environmental monitoring using GNSS, global navigation satellite system. Springer, BerlinCrossRefGoogle Scholar
  8. Barletta V, Sabadini R, Bordoni A (2008) Isolating the PGR signal in the GRACE data: impact on mass balance estimates in Antarctica and Greenland. Geophys J Int 172(1):18–30. doi: 10.1111/j.1365-246X.2007.03630.x CrossRefGoogle Scholar
  9. Baur O, Kuhn M, Featherstone W (2009) GRACE-derived ice-mass variations over Greenland by acocunting for leakage effects. J Geophys Res 114(B06407). doi: 10.1029/2008JB006239
  10. Belvis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS meteorology: remote sensing of water vapour using global positioning system. J Geophys Res 97:15787–15801CrossRefGoogle Scholar
  11. Belvis M, Businger S, Chiswell S, Herring TA, Anthes RA, Rocken C, Ware RH (1994) GPS meteorology: mapping zenith wet delays onto precipitable water. J Appl Meteorol 33:379–386CrossRefGoogle Scholar
  12. Beyerle G, Schmidt T, Michalak G, Heise S, Wickert J, Reigber C (2005) GPS radio occultation with GRACE: atmospheric profiling utilizing the zero difference technique. Geophys Res Lett 32(L13806). doi: 10.1029/2005GL023109
  13. Boy J-P, Chao B (2005) Precise evaluation of atmospheric loading effects on Earth’s time-variable gravity field. J Geophys Res Solid Earth 110(B8): 4–12. doi: 10.1029/2002JB002333 Google Scholar
  14. Bruinsma S, Lemoine J, Biancale R, Valès N (2010) CNES/GRGS 10-day gravity field models (release 2) and their evaluation. Adv Space Res 45(4):587–601. doi: 10.1016/j.asr.2009.10.012 CrossRefGoogle Scholar
  15. Cardellach E, Fabra F, Rius A, Pettinato S, D’Addio S (2012) Characterization of dry-snow sub-structure using GNSS reflected signals. Remote Sens Environ 124:122–134. doi: 10.1016/j.rse.2012.05.012 CrossRefGoogle Scholar
  16. Chambers D, Wahr J, Nerem R (2004) Preliminary observations of global ocean mass variations with GRACE. Geophys Res Lett 31(L13310). doi: 10.1029/2004GL020461
  17. Cheng CZ, Kuo Y-H, Anthes RA, Wu L (2006) Satellite constellation monitors global and space weather. EOS Trans Am Geophys Union 87(17):166. doi:  10.1029/2006EO170003 Google Scholar
  18. Chen G, Herring TA (1997) Effects of atmospheric azimuthal asymmetry on the analysis of apace geodetic data. J Geophys Res 102(B9):20489–20502Google Scholar
  19. Davis JL, Herring TA, Shapiro II, Rogers AE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20:1593–1607CrossRefGoogle Scholar
  20. Egido A, Delas M, Garcia M, Caparrini M (2009) Non-space applications of GNSS-R: from research to operational services. Examples of water and land monitoring systems. In: IEEE international geoscience and remote sensing symposium IGARSS, Cape Town, pp 170–173Google Scholar
  21. Ellett KM, Walker JP, Western AW, Rodell M (2006) A framework for assessing the potential of remote sensed gravity to provide new insight on the hydrology of the Murray-darling basin. Aus J Water Resour 10(2):89–101Google Scholar
  22. Foelsche U, Borsche M, Steiner AK, Gobiet M, Pirscher B, Kirchengast G, Wickert J, Schmidt T (2007) Observing upper troposphere-lower stratosphere climate with radio occultation from the CHAMP satellite. Clim Dyn 31:49–65CrossRefGoogle Scholar
  23. Foelsche U, Kirchengast G, Steiner AK (2006) Atmos climate. Studies by occultation methods. Springer, BerlinGoogle Scholar
  24. Gleason S, Hodgart S, Sun Y, Gommenginger C, Mackin S, Adjrad M, Unwin M (2005) Detection and processing of bistatically reflected GPS signals from low earth orbit for the purpose of ocean remote sensing. IEEE Trans Geosci Remote Sens 43(6):1229–1241. doi: 10.1109/TGRS.2005.845643 Google Scholar
  25. Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2010) The scientific value of high-rate, low-latency GPS data, a white paperGoogle Scholar
  26. Hammond WC, Brooks BA, Bürgmann R, Heaton T, Jackson M, Lowry AR, Anandakrishnan S (2011) Scientific value of real-time global positioning system data. Eos 92(15):125–126. doi: 10.1029/2011EO150001 CrossRefGoogle Scholar
  27. Hanssen RF, Weckwerth TM, Zebker HA, Klees R (1999) High-resolution water vapour mapping from interferometric radar measurements. Science 283:1297–1299CrossRefGoogle Scholar
  28. Healey S, Jupp A, Offiler D, Eyre J (2003) The assimilation of radio occultation measurements. In: Reigber C, Lühr H, Schwintzer P (eds) First CHAMP mission results for gravity, magnetic and atmospheric studies. Springer, HeidelbergGoogle Scholar
  29. Heise S, Wickert J, Beyerle G, Schmidt T, Reigber C (2006) Global monitoring of tropospheric water vapour with GPS radio occultation aboard CHAMP. Adv Space Res 37(12):2222–2227CrossRefGoogle Scholar
  30. Heiskanen WA, Moritz H (1967) Physical geodesy. Freeman and Company, San FranciscoGoogle Scholar
  31. Hirt C, Gruber T, Featherstone WE (2011) Evaluation of the first GOCE static gravity field models using terrestrial gravity, vertical deflections and EGM2008 quasigeoid heights. J Geodesy 85:723–740. doi: 10.1007/s00190-011-0482-y CrossRefGoogle Scholar
  32. Khandu, Awange JL, Wickert J, Schmidt T, Sharifi MA, Heck B, Fleming K (2010) GNSS remote sensing of the Australian tropopause. Climatic Change 105(3-4): 597-618, doi: 10.1007/s10584-010-9894-6
  33. Kuo Y-H, Schreiner WS, Wang J, Rossiter DL, Zhang Y (2005) Comparison of GPS radio occultation soundings with radiosonde. Geophys Res Lett 32. doi: 10.1029/2004GL021443
  34. Kuo Y-H, Sokolovski SV, Anthens RA, Vandenberghe F (2000) Assimilation of the GPS radio occultation data for numerical weather prediction. Terr Atmos Oceanic Sci 11:157–186Google Scholar
  35. Larson KM, Gutmann ED, Zavorotny VU, Braun JJ, Williams MW, Nievinski FG (2009) Can we measure snow depth with GPS receivers? Geophys Res Lett 36(17). doi: 10.1029/2009GL039430
  36. Larson KM, Small EE, Gutmann ED, Bilich AL, Braun JJ, Zavorotny VU (2008) Use of GPS receivers as a soil moisture network for water cycle studies. Geophys Res Lett 35(L24405). doi: 10.1029/2008GL036013
  37. Leick A (2004) GPS satellite surveying, 3rd edn. Wiley, New YorkGoogle Scholar
  38. Lemoine F, Luthcke S, Rowlands D, Chinn D, Klosko S, Cox C (2007) The use of mascons to resolve time-variable gravity from GRACE. In: Tregoning P, Rizos C (eds) Dynamic planet. Springer, Berlin, pp 231–236CrossRefGoogle Scholar
  39. Lowe ST, LaBrecque JL, Zuffada C, Romans LJ, Young L, Hajj GA (2002) First spaceborne observation of an earth-reflected GPS signal. Radio Sci 37(1):1007. doi: 10.1029/2000RS002539 CrossRefGoogle Scholar
  40. Lowe ST, Zuffada C, Chao Y, Kroger P, Young LE, LaBrecque JL (2002) 5-cm-Precision aircraft ocean altimetry using GPS reflections. Geophys Res Lett 29(10):1375. doi: 10.1029/2002GL014759 CrossRefGoogle Scholar
  41. Luthcke S, Rowlands D, Lemoine F, Klosko S, Chinn D, McCarthy J (2006) Monthly spherical harmonic gravity field solutions determined from GRACE inter-satellite range-rate data alone. Geophys Res Lett 33(L02402). doi: 10.1029/2005GL024846
  42. Martín-Neira M (1993) A passive reflectometry and interferometry system (PARIS): application to ocean altimetry. J ESA 17(4):331–335Google Scholar
  43. Melbourne WG, Davis ES, Duncan CB, Hajj GA, Hardy K, Kursinski R, Mechan TK, Young LE, Yunck TP (1994) The application of spaceborne GPS to atmospheric limb sounding and global change monitoring. JPL Publication, Pasadena, pp 94–18Google Scholar
  44. Niell AE (1996) Global mapping functions for the atmosphere delay at adio wavelengths. J Geophys Res 101(B2): 3227–3246Google Scholar
  45. Pool DR, Eychaner JH (1995) Measurements of aquifer-storage change and specific yield using gravity surveys. Ground Water 33(3):425–432CrossRefGoogle Scholar
  46. Prasad R, Ruggieri M (2005) Applied satellite navigation using GPS GALILEO and augmentation systems. Artech House, BostonGoogle Scholar
  47. Pugh D (2004) Changing sea levels. effect of tides, weather and climate. Cambridge Univeristy Press, New YorkGoogle Scholar
  48. Ramillien G, Cazenave A, Brunau O (2004) Global time variations of hydrological signals from GRACE satellite gravimetry. Geophys J Int 158(3):813–826. doi: 10.1111/j.1365-246X.2004.02328.x CrossRefGoogle Scholar
  49. Ramillien G, Frappart F, Cazenave A, Gntner A (2005) Time variations of land water storage from an inversion of two years of GRACE geoids [rapid communication]. Earth Planet Sci Lett 235(1–2):283–301. doi: 10.1016/j.epsl.2005.04.005 CrossRefGoogle Scholar
  50. Ray M, Tido S, Conor S, Wang S (2006) Impact of balloon drift errors in radiosonde data on 57 climate statistics. J Clim 19(14):3430–3442CrossRefGoogle Scholar
  51. Resch GM (1984) Water vapour radiometry in geodetic applications in geodetic refraction. Springer, New YorkGoogle Scholar
  52. Rieser D (2008) Comparison of GRACE-derived monthly surface mass Variations with rainfall data in Australia. MSc thesis, Graz University of TechnologyGoogle Scholar
  53. Rocken C, Ware R, Hove TV, Solheim F, Alber C, Johnson J, Belvis M, Businger S (1993) Sensing atmospheric water vapour with the global positioning system. Geophys Res Lett 20(23):2631–2634Google Scholar
  54. Rodell M, Famiglietti JS (1999) Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Resour Res 35(9):2705–2724. doi: 10.1029/1999WR900141 CrossRefGoogle Scholar
  55. Rodell M, Felicogna I, Famiglietti JS, (2009) Satellite-based estimates of groundwater depletion in India. Nature 460: 999-1003, doi: 10.1038/nature08238
  56. Rummel R, Balmino G, Johannessen J, Visser P, Woodworth P (2002) Dedicated gravity field missions—principles and aims. J Geodyn 33(1):3–20. doi: 10.1016/S0264-3707(01)00050-3 CrossRefGoogle Scholar
  57. Schmidt T, Wickert J, Beyerle G, Reigber C (2004) Tropical tropopause parameters derived from GPS radio occultation measurements with CHAMP. J Geophys Res 109:D13105. doi: 10.1029/2004JD004566 CrossRefGoogle Scholar
  58. Schmidt T, Heise S, Wickert J, Beyerle G, Reigber C (2005) GPS radio occultation with CHAMP and SAC-C: global monitoring of thermal tropopause parameters. Atmos Chem Phys 5:1473–1488CrossRefGoogle Scholar
  59. Schmidt T, Wickert J, Beyerle G, Heise S (2008) Global tropopause height trends estimated from GPS radio occultation data. Geophys Res Lett 35:L11806. doi: 10.1029/2008GL034012 CrossRefGoogle Scholar
  60. Schrama EJO, Visser PNAM (2007) Accuracy assessment of the monthly GRACE geoids based upon a simulation. J Geodesy 81(1):67–80. doi: 10.1007/s00190-006-0085-1 CrossRefGoogle Scholar
  61. Seidel DJ, Randel WJ (2006) Variability and trends in the global tropopause estimated from radiosonde data. J Geophys Res 111. doi: 10.1029/2006JD007363
  62. Steiner AK, Kirchengast G, Foelsche U, Kornblueh L, Manzini E, Bengtsson L (2001) GNSS occultation sounding for climate monitoring. Phys Chem Earth 26:113–124CrossRefGoogle Scholar
  63. Swenson S, Wahr J (2002) Estimated effects of the vertical structure of atmospheric mass on the time-variable geoid. J Geophys Res 107(B9):219. doi:  10.1029/2000JB000024 Google Scholar
  64. Swenson S, Wahr J, Milly PCD (2003) Estimated accuracies of regional water storage variations inferred from the gravity recovery and climate experiment (GRACE). Water Resour Res 39(8):1223. doi: 10.1029/2002WR001736
  65. Tapley BD, Bettadpur S, Ries JC, Thompson PF, Watkins MM (2004) GRACE measurements of mass variability in the earth system. Science 305:503–505. doi: 10.1126/science.1099192 CrossRefGoogle Scholar
  66. Thayer D (1974) An improved equation for the radio refractive index of air. Radio Sci 9:803–807CrossRefGoogle Scholar
  67. Tiwari V, Wahr J, Swenson S (2009) Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys Res Lett 36:L18401. doi: 10.1029/2009GL039401 CrossRefGoogle Scholar
  68. Tralli DM, Lichten SM (1990) Stochastic estimation of tropospheric path delays in global positioning system geodetic measurements. Bull Geod 64:127–159CrossRefGoogle Scholar
  69. Tregoning P, Ramillien G, McQueen H, Zwartz D (2009) Glacial isostatic adjustment and nonstationary signals observed by GRACE. J Geophys Res 114:B06406. doi: 10.1029/2008JB006161 CrossRefGoogle Scholar
  70. Tregoning P, Watson C, Ramillien G, McQueen H, Zhang J (2009) Detecting hydrologic deformation using GRACE and GPS. Geophys Res Lett 36(L15401). doi: 10.1029/2009GL038718
  71. Tsuda T, Heki K, Miyazaki S, Aonashi K, Hirahara K, Tobita M, Kimata F, Tabei T, Matsushima T, Kimura F, Satomura M, Kato T, Naito I (1998) GPS meteorology project of Japan-exploring frontiers of geodesy. Earth Planet Space 50(10):1–5Google Scholar
  72. Tsuda T, Hocke K (2004) Application of GPS occultation for studies of atmospheric waves in the middle atmosphere and ionosphere. In: Anthens et al. (eds). Application of GPS remote sensing to meteorology and related fields. J Meteorol Soc Jpn 82(1B):419–426Google Scholar
  73. Velicogna I (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophys Res Lett 36(L19503). doi: 10.1029/2009GL040222
  74. Wahr J, Jayne S, Bryan F (2002) A method of inferring changes in deep ocean currents from satellite measurements of time-variable gravity. J Geophys Res 107(C12):3218. doi: 10.1029/2002JC001274 Google Scholar
  75. Wahr J, Molenaar M, Bryan F (1998) Time variability of the earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res Solid Earth 103(B12):30205–30230. doi: 10.1029/98JB02844
  76. Ware H, Fulker D, Stein S, Anderson D, Avery S, Clerk R, Droegmeier K, Kuettner J, Minster B, Sorooshian S (2000a) SuomiNet: a real time national GPS network for atmospheric research and education. Bull Am Meteorol Soc 81:677–694CrossRefGoogle Scholar
  77. Werth S, Güntner A, Petrovic S, Schmidt R (2009) Integration of GRACE mass variations into a global hydrological model. Earth Planetary Sci Lett 27(1–2):166–173. doi: 10.1016/j.epsl.2008.10.021 CrossRefGoogle Scholar
  78. Wickert J (2002) Das CHAMP-Radiookkultationsexperiment: Algorithmen, Prozessierungssystem und erste Ergebnisse. Dissertation, Scientific Technical Report STR02/07, GFZ PotsdamGoogle Scholar
  79. Wickert J (2004) Comparison of vertical refractivity and temperature profiles from CHAMP with radiosonde measurements. Danish Meteorological Institute, CopenhagenGoogle Scholar
  80. Wickert J, Beyerle G, Hajj GA, Schwieger V, Reigber C (2002) GPS radio occultation with CHAMP: atmospheric profiling utilizing the space-based single differencing technique. Geophys Res Lett 29(8). doi: 10.1029/2001GL013982
  81. Wickert J, Beyerle G, Konig K, Heise S, Grunwaldt L, Michalak G, Reigber C, Schmidt T (2005) GPS radio ocultation with CHAMP and GRACE: a first look at a new and promising satellite configuration for global atmospheric sounding. Ann Geophys 23:653–657Google Scholar
  82. Wickert J, Michalak G, Schmidt T, Beyerle G, Cheng CZ, Healy SB, Heise S, Huang CY, Jakowski N, Köhler W, Mayer C, Offiler D, Ozawa E, Pavelyev AG, Rothacher M, Tapley B, Arras C (2009) GPS radio occultation: Results from CHAMP, GRACE and FORMOSAT-3/COS MIC. Terr Atmos Ocean Sci., 20:35–50, doi: 10.3319/TAO.2007.12.26.01(F3C)
  83. Yang D, Zhou Y, Wang Y (2009) Remote sensing with reflected signals. GNSS-R data processing software and test analysis. Inside GNSS, Sept/Oct, pp 40–45Google Scholar
  84. Yunck TP (2003): The promise of spaceborne GPS for earth remote sensing. In: International workshop on GPS meteorology, 14–17 January 2003, Tsukuba, JapanGoogle Scholar
  85. Yunck TP, Wu SC, Wu JT, Thornton CL (1990) Precise tracking of remote sensing satellites with the global positioning system. IEEE Trans Geosci Remote Sens 28:108–116CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Spatial SciencesCurtin University of TechnologyPerthAustralia
  2. 2.Karlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Kyoto UniversityKyotoJapan
  4. 4.School of EnvironmentMaseno UniversityKisumuKenya
  5. 5.Geospatial and Space TechnologyUniversity of NairobiNairobiKenya

Personalised recommendations