Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 643 Accesses

Abstract

This chapter discusses the influence of individual QD growth parameters and stacking challenges, along with the material quality and doping levels used for laser device growth. Long wavelength InGaAs QD growth process optimization for applications at \(1.3\,\upmu \mathrm{{m}}\) is investigated. Notably, the role of the V/III ratio was found to be crucial for the long-term stability of QD properties during subsequent QD overgrowth and annealing. Results of MOVPE grown material properties used for device fabrication and limits of possible doping levels are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Passaseo, V. Tasco, M.D. Giorgi, M.T. Todaro, M.D. Vittorio, R. Cingolani, Long wavelength emission in In\(_x\)Ga\(_{1 - x}\)As quantum dot structures grown in a GaAs barrier by metalorganic chemical vapor deposition. Appl. Phys. Lett. 84(11), 1868 (2004)

    Google Scholar 

  2. J. Oshinowo, M. Nishioka, S. Ishida, Y. Arakawa, Highly uniform InGaAs/GaAs quantum dots (15 nm) by metalorganic chemical vapor deposition. Appl. Phys. Lett. 65(11), 1421 (1994)

    Google Scholar 

  3. E. Steimetz, F. Schienle, J.T. Zettler, W. Richter, Stranski-Krastanov formation of InAs quantum dots monitored during growth by reflectance anisotropy spectroscopy and spectroscopic ellipsometry. J. Cryst. Growth 170(1–4), 208 (1997). ISSN 0022-0248

    Google Scholar 

  4. J.A. Venables, G.D. Spiller, M. Hanbücken, Nucleation and growth of thin films. Rep. Prog. Phys. 47, 399 (1984)

    Google Scholar 

  5. T. Walther, A. Cullis, D. Norris, M. Hopkinson, Nature of the Stranski-Krastanow transition during epitaxy of InGaAs on GaAs. Phys. Rev. Lett. 86(11), 2381 (2001). ISSN 0031-9007

    Google Scholar 

  6. K. Mukai, N. Ohtsuka, M. Sugawara, S. Yamazaki, Self-formed In\(_{0.5}\text{ Ga}_{0.5}\)As quantum dots on GaAs substrates emitting at 1.3 \(\mu \)m. Jpn. J. Appl. Phys. 33(12A), L1710 (1994)

    Google Scholar 

  7. J. Tatebayashi, M. Nishioka, Y. Arakawa, Over 1.5 \(\mu \)m light emission from InAs quantum dots embedded in InGaAs strain-reducing layer grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 78(22), 3469 (2001)

    Google Scholar 

  8. Q. Gong, P. Offermans, R. Nötzel, P.M. Koenraad, J.H. Wolter, Capping process of InAs/GaAs quantum dots studied by cross-sectional scanning tunneling microscopy. Appl. Phys. Lett. 85(23), 5697 (2004)

    Google Scholar 

  9. G. Costantini, A. Rastelli, C. Manzano, P. Acosta-Diaz, R. Songmuang, G. Katsaros, O. Schmidt, K. Kern, Interplay between thermodynamics and kinetics in the capping of InAs/GaAs(001) quantum dots. Phys. Rev. Lett. 96(22), 226106 (2006). ISSN 0031-9007

    Google Scholar 

  10. M.V. Maximov, A.F. Tsatsul’nikov, B.V. Volovik, D.S. Sizov, Y.M. Shernyakov, I.N. Kaiander, A.E. Zhukov, A.R. Kovsh, S.S. Mikhrin, V.M. Ustinov, Z.I. Alferov, R. Heitz, V.A. Shchukin, N.N. Ledentsov, D. Bimberg, Y.G. Musikhin, W. Neumann, Tuning quantum dot properties by activated phase separation of an InGa(Al)As alloy grown on InAs stressors. Phys. Rev. B 62(24), 16671 (2000)

    Google Scholar 

  11. P. Howe, E.C.L. Ru, E. Clarke, R. Murray, T.S. Jones, Quantification of segregation and strain effects in InAs/GaAs quantum dot growth. J. Appl. Phys. 98(11), 113511 (2005)

    Google Scholar 

  12. A. Lenz, R. Timm, H. Eisele, C. Hennig, R.L. Becker, S.K. Sellin, U.W. Pohl, D. Bimberg, M. Dähne, Reversed truncated cone composition distribution of In\(_{0.8}\)Ga\(_{0.2}\)As quantumdots overgrown by an In\(_{0.1}\)Ga\(_{0.9}\)As layer in a GaAs matrix. Appl. Phys. Lett. 81(27), 5150 (2002)

    Google Scholar 

  13. A. Lemaître, G. Patriarche, F. Glas, Composition profiling of InAs/GaAs quantum dots. Appl. Phys. Lett. 85(17), 3717 (2004)

    Google Scholar 

  14. D. Bimberg (ed.), Semiconductor Nanostructures (Springer, Berlin, 2008)

    Google Scholar 

  15. S.-K. Park, J. Tatebayashi, Y. Arakawa, Formation of ultrahigh-density InAs/AlAs quantum dots by metalorganic chemical vapor deposition. Appl. Phys. Lett. 84(11), 1877 (2004). ISSN 00036951

    Google Scholar 

  16. A. Krost, F. Heinrichsdorff, D. Bimberg, A. Darhuber, G. Bauer, High-resolution x-ray diffraction of self-organized InGaAs/GaAs quantum dot structures. Appl. Phys. Lett. 68(6), 785 (1996)

    Google Scholar 

  17. U. Woggon, W. Langbein, J.M. Hvam, A. Rosenauer, T. Remmele, D. Gerthsen, Electron microscopic and optical investigations of the indium distribution in GaAs capped In\(_x\)Ga\(_{1 - x}\)As islands. Appl. Phys. Lett. 71(3), 377 (1997)

    Google Scholar 

  18. N. Grandjean, J. Massies, O. Tottereau, Surface segregation in (Ga, In)As/GaAs quantum boxes. Phys. Rev. B 55(16), R10189 (1997)

    Google Scholar 

  19. K. Pötschke, L. Müller-Kirsch, R. Heitz, R.L. Sellin, U.W. Pohl, D. Bimberg, N. Zakharov, P. Werner, Ripening of self-organized InAs quantum dots. Physica E: low-dimensional nystems and nanostructures 21(2–4), 606 (2004). ISSN 13869477

    Google Scholar 

  20. N. Moll, M. Scheffler, E. Pehlke, Influence of surface stress on the equilibrium shape of strained quantum dots. Phys. Rev. B 58(8), 4566 (1998). ISSN 0163-1829

    Google Scholar 

  21. V. Shchukin, D. Bimberg, Spontaneous ordering of nanostructures on crystal surfaces. Rev. Mod. Phys. 71(4), 1125 (1999). ISSN 0034-6861

    Google Scholar 

  22. R. Seguin, A. Schliwa, T.D. Germann, S. Rodt, K. Pötschke, A. Strittmatter, U.W. Pohl, D. Bimberg, M. Winkelnkemper, T. Hammerschmidt, P. Kratzer, Control of fine-structure splitting and excitonic binding energies in selected individual InAs/GaAs quantum dots. Appl. Phys. Lett. 89(26), 263109 (2006). ISSN 00036951

    Google Scholar 

  23. R. Songmuang, S. Kiravittaya, O. Schmidt, Shape evolution of InAs quantum dots during overgrowth. J. Cryst. Growth 249(3–4), 416 (2003). ISSN 00220248

    Google Scholar 

  24. V.M. Ustinov, N.A. Maleev, A.E. Zhukov, A.R. Kovsh, A.Y. Egorov, A.V. Lunev, B.V. Volovik, I.L. Krestnikov, Y.G. Musikhin, N.A. Bert, P.S. Kop’ev, Z.I. Alferov, N.N. Ledentsov, D. Bimberg, InAs/InGaAs quantum dot structures on GaAs substrates emitting at 1.3 \(\mu \)m. Appl. Phys. Lett. 74(19), 2815 (1999)

    Google Scholar 

  25. I. Kaiander, MOCVD growth of InGaAs/GaAs QDs for long wavelength lasers and VCSELs, Dissertation, Technische Universität Berlin, 2006

    Google Scholar 

  26. G.-X. Qian, R. Martin, D. Chadi, First-principles study of the atomic reconstructions and energies of Ga- and As-stabilized GaAs(100) surfaces. Phys. Rev. B 38(11), 7649 (1988). ISSN 0163-1829

    Google Scholar 

  27. F. Heinrichsdorff, Self organization phenomena of InGaAs/GaAs quantum dots grown by metalorganic chemical vapour deposition. J. Cryst. Growth 170(1–4), 568 (1997). ISSN 00220248

    Google Scholar 

  28. R. Leon, C. Lobo, J. Zou, T. Romeo, D. Cockayne, Stable and metastable InGaAs/GaAs island shapes and surfactantlike suppression of the wetting transformation. Phys. Rev. Lett. 81(12), 2486 (1998). ISSN 0031-9007

    Google Scholar 

  29. M.J. Ekenstedt, S.M. Wang, T.G. Andersson, Temperature-dependent critical layer thickness for In\(_{0.36}\)Ga\(_{0.64}\)As/GaAs single quantum wells. Appl. Phys. Lett. 58(8), 854 (1991)

    Google Scholar 

  30. W.-C. Hsu, S.-Z. Chang, W. Lin, A study of layer thickness and interface qualities of strained In\(_x\)Ga\(_{1-x}\)As/GaAs Layers. Jpn. J. Appl. Phys. 31(1), 26 (1992)

    Google Scholar 

  31. R. Sellin, F. Heinrichsdorff, C. Ribbat, M. Grundmann, U.W. Pohl, D. Bimberg, Surface flattening during MOCVD of thin GaAs layers covering InGaAs quantum dots. J. Cryst. Growth 221(1–4), 581 (2000). ISSN 0022–0248

    Google Scholar 

  32. N. Nuntawong, J. Tatebayashi, P.S. Wong, D.L. Huffaker, Localized strain reduction in strain-compensated InAs/GaAs stacked quantum dot structures. Appl. Phys. Lett. 90(16), 163121 (2007)

    Google Scholar 

  33. R. Suzuki, T. Miyamoto, T. Sengoku, F. Koyama, Reduction of spacer layer thickness of InAs quantum dots using GaNAs strain compensation layer. Appl. Phys. Lett. 92(14), 141110 (2008)

    Google Scholar 

  34. M. Hanke, D. Grigoriev, M. Schmidbauer, P. Schäfer, R. Köhler, U.W. Pohl, R.L. Sellin, D. Bimberg, N.D. Zakharov, P. Werner, Diffuse X-ray scattering of InGaAs/GaAs quantum dots. Physica E 21(2–4), 684 (2004)

    Google Scholar 

  35. M. Hanke, D. Grigoriev, M. Schmidbauer, P. SchSfer, R. Köhler, R.L. Sellin, U.W. Pohl, D. Bimberg, Vertical composition gradient in InGaAs/GaAs alloy quantum dots as revealed by high-resolution x-ray diffraction. Appl. Phys. Lett. 85(15), 3062 (2004)

    Google Scholar 

  36. P. Yu, W. Langbein, K. Leosson, J. Hvam, N. Ledentsov, D. Bimberg, V. Ustinov, A. Egorov, A. Zhukov, A. Tsatsul’nikov, Y. Musikhin, Optical anisotropy in vertically coupled quantum dots. Phys. Rev. B 60(24), 16680 (1999). ISSN 0163-1829

    Google Scholar 

  37. Q. Xie, A. Madhukar, P. Chen, N.P. Kobayashi, Vertically self-organized InAs quantum box islands on GaAs(100). Phys. Rev. Lett. 75(13), 2542 (1995)

    Google Scholar 

  38. H. Eisele, O. Flebbe, T. Kalka, C. Preinesberger, F. Heinrichsdorff, A. Krost, D. Bimberg, M. Dähne-Prietsch, Cross-sectional scanning-tunneling microscopy of stacked InAs quantum dots. Appl. Phys. Lett. 75(1), 106 (1999)

    Google Scholar 

  39. K. Gradkowski, T.C. Sadler, L.O. Mereni, V. Dimastrodonato, P.J. Parbrook, G. Huyet, E. Pelucchi, Crystal defect topography of Stranski-Krastanow quantum dots by atomic force microscopy. Appl. Phys. Lett. 97(19), 191106 (2010)

    Google Scholar 

  40. H.Y. Liu, I.R. Sellers, M. Gutiérrez, K.M. Groom, W.M. Soong, M. Hopkinson, J.P.R. David, R. Beanland, T.J. Badcock, D.J. Mowbray, M.S. Skolnick, Influences of the spacer layer growth temperature on multilayer InAs/GaAs quantum dot structures. J. Appl. Phys. 96(4), 1988 (2004)

    Google Scholar 

  41. X.-D. Wang, N. Liu, C.K. Shih, S. Govindaraju, J.A.L. Holmes, Spatial correlation-anticorrelation in strain-driven self-assembled InGaAs quantum dots. Appl. Phys. Lett. 85(8), 1356 (2004)

    Google Scholar 

  42. T. Yang, J. Tatebayashi, M. Nishioka, Y. Arakawa, Improved surface morphology of stacked 1.3  \(mu\)m InAs/GaAs quantum dot active regions by introducing annealing processes. Appl. Phys. Lett. 89(8), 081902 (2006)

    Google Scholar 

  43. N. Nuntawong, S. Huang, Y.B. Jiang, C.P. Hains, D.L. Huffaker, Defect dissolution in strain-compensated stacked InAs/GaAs quantum dots grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 87(11), 113105 (2005)

    Google Scholar 

  44. T.D. Germann, A. Strittmatter, T. Kettler, K. Posilovic, K. Schatke, K. Pötschke, D. Feise, U.W. Pohl, D Bimberg, Entwicklung der Oberflächenmorphologie von InGaAs/GaAs - Quantenpunktstrukturen, III/V Semiconductor Epitaxy Workshop, 2005

    Google Scholar 

  45. A. Strittmatter, T.D. Germann, T. Kettler, K. Posilovic, U.W. Pohl, D. Bimberg, Alternative precursor metal-organic chemical vapor deposition of InGaAs/GaAs quantum dot laser diodes with ultralow threshold at 1.25 \(\mu \)m. Appl. Phys. Lett. 88(26), 262104 (2006)

    Google Scholar 

  46. T.D. Germann, A. Strittmatter, T. Kettler, K. Posilovic, U.W. Pohl, D. Bimberg, MOCVD of InGaAs/GaAs quantum dots for lasers emitting close to 1.3 \(\mu \)m. J. Cryst. Growth 298, 591 (2007)

    Google Scholar 

  47. D.G. Deppe, J.N. Holonyak, Atom diffusion and impurity-induced layer disordering in quantum well III-V semiconductor heterostructures. J. Appl. Phys. 64(12), R93 (1988)

    Google Scholar 

  48. T.Y. Tan, U. Gösele, S. Yu, Point defects, diffusion mechanisms, and superlattice disordering in gallium arsenide-based materials. Crit. Rev. Solid State Mater. Sci. 17(1), 47 (1991)

    Google Scholar 

  49. C.H. Chen, C.A. Larsen, G.B. Stringfellow, Use of tertiarybutylarsine for GaAs growth. Appl. Phys. Lett. 50(4), 218 (1987)

    Google Scholar 

  50. R.M. Lum, J.K. Klingert, M.G. Lamont, Use of tertiarybutylarsine in the metalorganic chemical vapor deposition growth of GaAs. Appl. Phys. Lett. 50(5), 284 (1987)

    Google Scholar 

  51. Y.-M. Houng, T.S. Low, Te doping of GaAs and AlxGa1-xAs using diethyltellurium in low pressure OMVPE. J. Cryst. Growth 77(1–3), 272 (1986)

    Google Scholar 

  52. R.J. Malik, R.N. Nottenberg, E.F. Schubert, J.F. Walker, R.W. Ryan, Carbon doping in molecular beam epitaxy of GaAs from a heated graphite filament. Appl. Phys. Lett. 53(26), 2661 (1988). ISSN 00036951

    Google Scholar 

  53. U. Gösele, F. Morehead, Diffusion of zinc in gallium arsenide: a new model. J. Appl. Phys. 52(7), 4617 (1981). ISSN 00218979

    Google Scholar 

  54. A.H. van Ommen, Examination of models for Zn diffusion in GaAs. J. Appl. Phys. 54(9), 5055 (1983)

    Google Scholar 

  55. S. Adachi, GaAs, AlAs, and Al\(_{\rm {x}}\)Ga\(_{1-\rm {x}}\)As Material parameters for use in research and device applications. J. Appl. Phys. 58(3), R1 (1985). ISSN 00218979

    Google Scholar 

  56. A. Mazuelas, H. Nörenberg, R. Hey, H.T. Grahn, Growth and x-ray characterization of strain compensated GaAs/AlAs distributed Bragg reflectors. Appl. Phys. Lett. 68(6), 806 (1996). ISSN 00036951

    Google Scholar 

  57. V. Gottschalch, G. Leibiger, D. Spemann, X-ray investigations of the intrinsic carbon-incorporation during the MOVPE growth of AlxGa1-xAs. Zeitschift für anorganische und allgemeine Chemie 630(10), 1419 (2004). ISSN 0044-2313

    Google Scholar 

  58. H. Kakinuma, M. Mohri, M. Akiyama, Characterization of oxygen and carbon in undoped AlGaAs grown by organometallic vapor-phase epitaxy. Jpn. J. Appl. Phys. 36(1A), 23 (1996)

    Google Scholar 

  59. S. Leu, F. Höhnsdorf, W. Stolz, R. Becker, A. Salzmann, A. Greiling, C- and O-incorporation in (AlGa)As epitaxial layers grown by MOVPE using TBAs. J. Cryst. Growth 195(1–4), 98 (1998)

    Google Scholar 

  60. S.J. Choi, J.H. Seo, J.H. Lee, K.S. Seo, Low doped P-type AlGaAs buffer layers grown by metalorganic chemical vapor deposition using intrinsic carbon doping method. Jpn. J. Appl. Phys. 37(Part 2, No. 4A), L363 (1998)

    Google Scholar 

  61. S.Z. Sun, E.A. Armour, K. Zheng, C.F. Schaus, Zinc and Tellurium doping in GaAs and AlxGa1-xAs grown by MOCVD. J. Cryst. Growth 113(1–2), 103 (1991). ISSN 0022–0248

    Google Scholar 

  62. K. Fujii, M. Satoh, K. Kawamura, H. Gotoh, Dependence of carbon incorporation on growth conditions for unintentionally doped AlGaAs during metalorganic vapor-phase epitaxy. J. Cryst. Growth 204(1–2), 10 (1999). ISSN 0022–0248

    Google Scholar 

  63. M. Mashita, H. Ishikawa, T. Izumiya, Comparative study on carbon incorporation in MOCVD AlGaAs layers between arsine and tertiarybutylarsine. J. Cryst. Growth 155(3–4), 164 (1995). ISSN 0022–0248

    Google Scholar 

  64. A. Hartmann, C. Dieker, M. Hollfelder, H. Hardtdegen, A. Förster, H. Lüth, Spontaneous formation of a tilted AlGaAs/GaAs superlattice during AlGaAs growth. Appl. Surf. Sci. 704, 123–124 (1998). Proceedings of the Sixth International Conference on the Formation of Semiconductor Interfaces. ISSN 0169-4332

    Google Scholar 

  65. S. Munnix, R.K. Bauer, D. Bimberg, J.J.S. Harris, R. Köhrbrück, E.C. Larkins, C. Maierhofer, D.E. Mars, J.N. Miller, Growth kinetics, impurity incorporation, defect generation, and interface quality of molecular-beam epitaxy grown AlGaAs/GaAs quantum wells: role of group III and group V fluxes. J. Vac. Sci. Technol. B 7(4), 704 (1989)

    Google Scholar 

  66. D. Bimberg, F. Heinrichsdorff, R.K. Bauer, D. Gerthsen, D. Stenkamp, D.E. Mars, J.N. Miller, Binary AlAs/GaAs versus ternary GaAlAs/GaAs interfaces: a dramatic difference of perfection. J. Vac. Sci. Technol. B 10(4), 1793 (1992)

    Google Scholar 

  67. S.A. Rushworth, L.M. Smith, M.S. Ravetz, K.M. Coward, R. Odedra, R. Kanjolia, S.W. Bland, F. Dimroth, A.W. Bett, Correlation of reduced oxygen content in precursors with improved MOVPE layer quality. J. Cryst. Growth 248, 86 (2003). ISSN 0022-0248

    Google Scholar 

  68. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89(11), 5815 (2001). ISSN 00218979

    Google Scholar 

  69. H. Tanaka, Y. Kawamura, H. Asahi, Refractive indices of In\(_{0.49}\)Ga\(_{0.51-x}\)Al\(_{x}\)P lattice matched to GaAs. J. Appl. Phys. 59(3), 985 (1986). ISSN 00218979

    Google Scholar 

  70. Y. Kaneko, K. Kishino, Refractive indices measurement of (GaInP)\(_{\text{ m}}\)/(AlInP)\(_{\text{ n}}\) quasi-quaternaries and GaInP/AlInP multiple quantum wells. J. Appl. Phys. 76(3), 1809 (1994). ISSN 00218979

    Google Scholar 

  71. J.W. Lee, S.J. Pearton, C.R. Abernathy, W.S. Hobson, F. Ren, C.S. Wu, Investigation of wet etching solutions for In0.5Ga0.5P. Solid-State Electron. 38(11), 1871 (1995). ISSN 0038-1101

    Google Scholar 

  72. P. Leerungnawarat, H. Cho, D. Hays, J. Lee, M. Devre, B. Reelfs, D. Johnson, J. Sasserath, C. Abernathy, S. Pearton, Selective dry etching of InGaP over GaAs in inductively coupled plasmas. J. Electron. Mater. 29, 586 (2000). ISSN 0361-5235, doi:10.1007/s11664-000-0049-9

  73. T. Iwamoto, K. Mori, M. Mizuta, H. Kukimoto, Doped InGaP grown by MOVPE on GaAs. J. Cryst. Growth 68(1), 27 (1984). ISSN 0022-0248

    Google Scholar 

  74. I. Yoon, B. Jeong, H. Park, Zn diffusion of In0.5Ga0.5P investigated by photoluminescence measurements. Thin Solid Films 300(1–2), 284 (1997). ISSN 00406090

    Google Scholar 

  75. T. Takamoto, M. Yumaguchi, E. Ikeda, T. Agui, H. Kurita, M. Al-Jassim, Mechanism of Zn and Si diffusion from a highly doped tunnel junction for InGaP/GaAs tandem solar cells. J. Appl. Phys. 85(3), 1481 (1999). ISSN 00218979

    Google Scholar 

  76. L.L. Chang, G.L. Pearson, Diffusion and solubility of zinc in gallium phosphide single crystals. J. Appl. Phys. 35(2), 374 (1964). ISSN 00218979

    Google Scholar 

  77. L.L. Chang, G.L. Pearson, Diffusion mechanism of Zn in GaAs and GaP based on isoconcentration diffusion experiments. J. Appl. Phys. 35(6), 1960 (1964). ISSN 00218979

    Google Scholar 

  78. L. Chang, H. Caseyjr, Diffusion and solubility of zinc in indium phosphide. Solid-State Electron. 7(6), 481 (1964). ISSN 00381101

    Google Scholar 

  79. A. Hooper, B. Tuck, A. Baker, Diffusion of zinc in indium phosphide at 700\(^{\circ }\)C. Solid-State Electron. 17(6), 531 (1974). ISSN 00381101

    Google Scholar 

  80. G.J. van Gurp, D.L.A. Tjaden, G.M. Fontijn, P.R. Boudewijn, Zinc diffusion in InGaAsP. J. Appl. Phys. 64(7), 3468 (1988). ISSN 00218979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim David Germann .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Germann, T. (2012). MOVPE Processes. In: Design and Realization of Novel GaAs Based Laser Concepts. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34079-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34079-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34078-9

  • Online ISBN: 978-3-642-34079-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics