Skip to main content

Mathematical Modeling of Radiation

  • Chapter
  • First Online:
Radiation, Ionization, and Detection in Nuclear Medicine
  • 2384 Accesses

Abstract

Mathematical modeling has been used routinely in the design and analysis of semiconductor radiation detectors because it saves development time in the initial stages and saves the manufacturing cost as a whole. Moreover, one can easily change parameters, such as trapping and de-trapping times (τ t, τ D), electric field strengths (ε), electron–hole mobility (μ n, μ h), and electrode designs, during computer simulation and can minimize the polarization and maximize overall detection efficiency (η) of the detector without spending much time in the laboratory. Thus, during computer simulation, these parameters are changed partially or fully until the model spectrum matches closely to the real spectrum [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spyropoulou V et al (2007) Modeling the imaging performance and low contrast detectability in digital mammography. In: 4th international conference on imaging technologies in biomedical sciences, Milos Island, 2007

    Google Scholar 

  2. Efthimiou N (2007) Investigation of the effect scintillator material on the overall detection system performance by application of analytical model. Nucl Instrum Methods A 571(1–2):270

    CAS  Google Scholar 

  3. Picone M (2002) Contribution a la simulation tridimensionnelle de detecteurs semiconductors en spectrometrie gamma. M.S. thesis, University of Joseph Fourier, Grenoble

    Google Scholar 

  4. Picone M, Gliere AA, Masse P (2003) A three dimensional model of CdZnTe gamma ray spectrometer. Nucl Instrum Methods A 504:313

    CAS  Google Scholar 

  5. Montemont G (2000) Optimization des performance de detecteurs CdTe et CdZnTe en spectrometrie gamma. M.S. thesis, University of Joseph Fourier, Grenoble

    Google Scholar 

  6. Hugonnard P Gliere A (1999) X-ray simulation and applications. In: Computerized tomography for industrial applications and image processing in radiology, Berlin. 15–17 Mar 1999

    Google Scholar 

  7. Petasecca M, Moscatelli F, Passeri D, Pignatel GU, Scarpello C (2005) Numerical simulation of radiation damage effects in p-type silicon detectors. Nucl Instrum Methods A 563(1):192

    Google Scholar 

  8. Iwata K, Hasagawa BH (1999) Numerical simulation of pixellated CdZnTe detector for medical radionuclide imaging application. IEEE Trans Nucl Sci 46(3):385

    CAS  Google Scholar 

  9. Del Sordo S (2009) Progress in the development of CdTe and CdZnTe semiconductor radiation detectors for astrophysical and medical applications. Sensors 9:3491

    PubMed  Google Scholar 

  10. Niraula M, Nakamura A, Aoki T, Tomita Y, Hatanaka Y (2002) Stability issues of high energy resolution diode type CdTe nuclear radiation detectors in a long term operation. Nucl Instrum Methods Phys Res A 491:168

    CAS  Google Scholar 

  11. Mott NF, Gurney RW (1940) Electronic process in ionic crystal. Clarendon Press, Oxford

    Google Scholar 

  12. Bao XJ, Schlesinger TE, James RB (1995) Electrical properties of mercuric iodide. In: Schlesinger TE, James RB (eds) Semiconductor for room temperature nuclear detector applications, vol 43. Academic, San Diego, p 124

    Google Scholar 

  13. Gerrish VM (1995) Characterization and quantification of detector performance. In: Schlesinger TE, James RB (eds) Semiconductor for room temperature nuclear detector applications, vol 43. Academic, San Diego, p 516

    Google Scholar 

  14. Derenzo SE, Weber MJ (1999) Prospects for first principle calculations of scintillator properties. Nucl Instrum Methods Phys Res A 422:111

    CAS  Google Scholar 

  15. Kabir MZ Yunus M Kasap SO (2005) The effects of large signals on charge collection in photoconductive X-ray detectors. In: Proceedings of the IEEE Canadian conference on electrical and computer engineering, Vancouver, 2005, p 197

    Google Scholar 

  16. Levi A, Schieber M, Burshtein Z (1983) Carriers surface recombination in HgI2 photon detectors. J Appl Phys 54:2472

    CAS  Google Scholar 

  17. Chu M, Terterian S, Ting D, James RB, Szawlowski M, Visser GJ. Effects of p/n inhomogeneity on CdZnTe radiation detectors, Brook Heaven National Lab, NY. BNL-69312, DTRA funded (partial) program, DTRA01-01-C-0071

    Google Scholar 

  18. Barret HH, Eskin JD, Barber HB (1995) Charge transport in arrays of semiconductor gamma ray detectors. Phys Rev Lett 75:156

    Google Scholar 

  19. Bao XJ, Schlesinger TE, James RB (1995) Electrical properties of mercuric iodide. In: Semiconductors for room temperature nuclear detectors. Academic, San Diego, p 159

    Google Scholar 

  20. Layni S, Dikant J, Ruzicka M (1978) Acta Phys Slov 28(3):210] or space charge formation Mohammed T, Friant A, Mellet J (1984) IEEE Trans Nucl Sci NS-32(1):581

    Google Scholar 

  21. Mohammed TB, Friant A, Mellet J (1984) Structure MIS effects on polarization of HgI2 crystals used for gamma ray detection. IEEE Trans Nucl Sci NS-32(1):581

    Google Scholar 

  22. Malm HL, Matini M (1974) Polarization phenomena in CdTe nuclear detectors. IEEE Trans Nucl Sci 21:322

    CAS  Google Scholar 

  23. Camarda GS, Bolotnikov AE, Cui Y, Hossain A, James RB (2007) Polarization studies of CdZnTe detectors using synchrotron X-ray radiation. In: NSS/MIC/RTSD symposium, Honolulu, 2007

    Google Scholar 

  24. Malm HL, Martini M (1974) Polarization phenomena in CdTe nuclear radiation detectors. IEEE Trans Nucl Sci 21(1):322 and Gerrish VM (1995) Characterization and quantification of detector performance. In: Schlesinger T, James RB (eds) Semiconductors for nuclear detection applications, vol 43. Academic, San Diego

    Google Scholar 

  25. Siffert P, Berger J, Cornet A, Stuck R, Bell RO, Serreze HB, Wald FV (1976) Polarization in cadmium telluride nuclear radiation detector. IEEE Trans Nucl Sci 23(1):159 and Camada GS, Bolotnikov AE, Cui Y, Hossian A, Awadalla SA, Mackenzie J, Chen H, James RB (2008) Polarization studies of CdZnTe detectors using synchrotron X-ray radiation. IEEE Trans Nucl Sci 55(6):3725

    Google Scholar 

  26. Mead CA, Spitzer WG (1964) A. Mead Conduction band minima Ga (As1-x Px). Phys Rev 134A:713

    Google Scholar 

  27. Gupta TK (2003) Contact resistance in hand book of thick and thin film hybrid microelectronics. Wiley, Hoboken, pp 193 and Blech J, Sello H, Greger LV (1983) Thin film integrated circuits, Chapter 23. In: Maissel LJ Glang R (eds) Thin film technology. McGraw Hill, New York

    Google Scholar 

  28. Cox CE, Lowe BG, Screen RA (1988) Small area high purity Germanium detectors for the use in energy range 100eV to 100 keV. IEEE Trans Nucl Sci 35(1):28

    CAS  Google Scholar 

  29. Darken LS (1993) Role of disordered regions in fast-neutron damage of HPGe detectors. Nucl Instrum Methods Phys Res B-74:523

    Google Scholar 

  30. Wald FW, Bell RO (1974) Semiconductors for room temperature nuclear detector application. Tyco Report US AEC AT (11–1), 3, 545

    Google Scholar 

  31. Franc J (2004) Defect structure of high resistive CdTe. IEEE Trans Nucl Sci 51(3):1176

    CAS  Google Scholar 

  32. Hau ID, Cindall C, Luke PN (2003) New contact development for Si (Li) orthogonal strip detectors. Nucl Intrum Methods Phys Res A 505:148

    CAS  Google Scholar 

  33. Owens A, Peacock A (2004) A compound semiconductor radiation detectors. Nucl Instrum Methods Phys Res A 531:18

    CAS  Google Scholar 

  34. McGregor DS, He Z, Siefert HA, Rojeski RA, Wehe DK (1998) CdZnTe semiconductor parallel strip Frisch grid radiation detectors. Trans Nucl Sci NS-45:443

    Google Scholar 

  35. McGregor DS, He Z, Siefert HA, Rojeski RA, Wehe DK (1997) Space charge carrier type sensing with parallel strip pseudo-Frisch grid CdZnTe semiconductor radiation detector. Appl Phys Lett 72:792

    Google Scholar 

  36. Barret HH, Eskin JD, Barber HB (1995) Charge transport arrays of semiconductor gamma ray detectors. Phys Rev Lett 75:56 and Frisch O (1944). British Atomic Energy Report BR-49

    Google Scholar 

  37. McGregor DS, Rojeski RA, He Z, Wehe DK, Driver M, Blakely M (1999) Geometrically weighted semiconductor Frisch grid radiation spectrometer. Nucl Instrum Methods A 422:164

    CAS  Google Scholar 

  38. Gregor DS, He Z, Siefert A, Wehe DK, Rojeski RA (1998) Performance characteristics of Frisch ring CdZnTe detectors. Appl Phys Lett 72:792

    Google Scholar 

  39. Butler J (1997) Nucl Instrum Method A 396:427 and Barrett HH, Eskin JD, Barber HB (1995) Charge transport in arrays of semiconductor gamma ray detectors. Phys Rev Lett 75:156

    Google Scholar 

  40. McGregor DS, Rojeski RA (1999) Performance geometrically weighted semiconductor Frisch grid radiation spectrometer. IEEE Trans Nucl Sci 46:250

    CAS  Google Scholar 

  41. McGragor DS, Rojeski RA (2001) US Patent No. 6175120

    Google Scholar 

  42. McNeil WJ, McGregor DS, Bolotnikov AE, Wright GW, James RB (1998) Project Report DOE, DE-FG07-031D14498

    Google Scholar 

  43. Luke PN (1995) Unipolar charge sensing with coplanar electrodes application to semiconductor detectors. IEEE Trans Nucl Sci 42:207

    CAS  Google Scholar 

  44. He Z et al (1995) Position sensitive single carrier semiconductor detectors. Nucl Instrum Methods A 380:228

    Google Scholar 

  45. He Z, Sturm BW (2005) Characteristics of depth sensing coplanar grid CdZeTe detectors. Nucl Instrum Methods A 554:291

    Google Scholar 

  46. Kozorezov AG, Wigmore JK (2007) Theory of the dynamic response of a coplanar grid semiconductor detector. Appl Phys Lett 91:023504

    Google Scholar 

  47. Montemont G, Arques M, Verger L, Rustique J (2001) A capacitive Frisch grid structure for CdZnTe detectors. IEEE Trans Nucl Sci 48:278

    CAS  Google Scholar 

  48. Owens A et al (2006) Hard X and γ-ray measurements with large volume coplanar grid CdZnTe detector. Nucl Instrum Methods Phys A 563:242

    CAS  Google Scholar 

  49. Luke PN, Amman M, Yaver H (1998) Coplanar grid CdZnTe detector with three dimensional position sensitivity. In: 8th symposium on semiconductor detectors, Schloss Elmau, 1998

    Google Scholar 

  50. Ramo S (1939) Currents induced by electron motion. Proc IRE 27:584

    Google Scholar 

  51. Mathy F, Gliere A, d’ Allion EG, Masse P, Picone M, Tabary J, Verger L (2004) A three dimensional model of CdZnTe gamma-ray detector and its experimental validation. IEEE Trans Nucl Sci 51(5):2410

    Google Scholar 

  52. Soldner SA, Narvett AJ, Covalt DE, Szeles C (2004) Characterization of the charge transport uniformity of CdZnTe crystals for large volume nuclear detector applications. IEEE Trans Nucl Sci 51(5):2443

    CAS  Google Scholar 

  53. Amman M, Lee JS, Luke PN (2002) Electron trapping non-uniformity in high pressure Bridgman grown CdZnTe. J Appl Phys 92:3198

    CAS  Google Scholar 

  54. Perez JM, He Z, Wehe DK (2001) Stability and characteristics of large CZT coplanar electrode detectors. IEEE Trans Nucl Sci 48(3):272

    CAS  Google Scholar 

  55. He Z, Knoll GK, Wehe DK, Du YF (1998) Co-planar grid pattern and their effect on energy resolution of CdZnTe detectors. Nucl Instrum Methods A 411:107

    CAS  Google Scholar 

  56. Visvikis D et al (2006) Monte Carlo based performance assessment of different animal PET architectures using pixellated CZT detectors. Nucl Instrum Methods Phys Res A 569:225

    CAS  Google Scholar 

  57. Perie I, Armbruster T, Koch M, Kreidl C, Fischer P (2010) DCD – the multichannel current mode ADC chip for readout by DEPFET pixel detector. IEEE Trans Nucl Sci 57(2):743

    Google Scholar 

  58. Baciak JE, He Z, Devito RP (2002) Electron trapping variation in single crystal pixelated HgI2 gamma ray spectrometer. IEEE Trans Nucl Sci 49(3):1264

    CAS  Google Scholar 

  59. Shockley W (1938) Currents to conductors induced by moving point charge. J Appl Phys 9:635 and Ramo S (1939) Current induced by electron motion. Proc IRE 27:584

    Google Scholar 

  60. Kabir MZ, Kasap SO (2004) Charge collection and absorption – limited X-ray sensitivity of pixellated X-ray detectors. J Vac Sci Technol A 22:975

    CAS  Google Scholar 

  61. Baciak JE (2004) Development of pixelated HgI2 radiation detectors for room temperature gamma ray spectroscopy. Ph.D. thesis, University of Michigan, Ann Arbor

    Google Scholar 

  62. Kabir MZ, Kasap SO (2003) Modulation transfer function of photoconductive X-ray image detectors: effect of charge carrier trapping. J Phys D: Appl Phys 36:2352

    CAS  Google Scholar 

  63. Day RB, Dearnaley G, Palms JM (1987) Determining the effective number bits of high resolution digitors. IEEE Trans Nucl Sci NS-14:487

    Google Scholar 

  64. Knoll GF, McGregor Proc DS (1993) Fundamentals of semiconductor detectors for ionizing radiation. Mater Res Soc 302:3

    CAS  Google Scholar 

  65. Shor A, Mardar YY, Soreq I (2003) IEEE Trans Nucl Sci Symp 5:3342

    Google Scholar 

  66. Kim JC, Kaye W, Zhang F, He Z (2010) Analysis of system-dependent factors affecting pixelated CdZnTe detector performance through simulation. In: IEEE NSS/MMC/RTSD, symposium, Knoxville, 2010

    Google Scholar 

  67. Shor A, Eisen Y, Mardor I (2004) Edge effects in pixelated CdZnTe gamma ray detectors. IEEE Trans Nucl Sci 51(5):2412

    CAS  Google Scholar 

  68. Neyts K, Beeckman J, Beunis F (2007) Quasi-stationary current contributions in electronic devices. Opto-Electron Rev 15(1):41

    CAS  Google Scholar 

  69. Knoll GF, McGregor DS (1993) Fundamentals of semiconductor detectors for ionizing radiation. Proc MRS 302:3

    CAS  Google Scholar 

  70. Moehrs S (2008) Ph.D. thesis, Dept. di Fisica Enrico Fermi, Università Degli Studi Di Pisa, Pisa

    Google Scholar 

  71. Iriarte A, Sorzano COS, Rubio JM, Marabini R (2009) A theoretical model for EM-ML reconstruction algorithms applied to rotating PET scanners. Phys Med Biol 54(1909)

    Google Scholar 

  72. Fano U (1947) Ionization yield of radiations. II Fluctuations of the number of ions. Phys Rev 72:26

    CAS  Google Scholar 

  73. Iwanczyk JS, Patt BE (1995) Electronics for x-ray and gamma ray spectrometers, Chapter 14. In: Schlesinger T, James RB (eds) Semiconductors for room temperature nuclear detector application. vol 43. Academic, San Diego, p 548

    Google Scholar 

  74. Swank RK (1974) Measurement of absorption and noise in X-ray image intensifier. J Appl Phys 45:3673

    CAS  Google Scholar 

  75. Hajdok G, Yao J, Battista JJ, Cunningham IA (2004) Signal and noise transfer properties of photoelectric interactions in diagnostic X-ray imaging detectors. Med Phys 33(10):3601–3620

    Google Scholar 

  76. Metz CE, Vyborny CJ (1983) Wiener spectral effects of spatial correlation between sites of characteristic X-ray emission and reabsorption in radiographic screen film systems. Phys Med Biol 28:547

    PubMed  CAS  Google Scholar 

  77. Zhao W, Ji WG, Rowlands JA (2001) Effects of characteristic X-rays on the noise power spectra and detective quantum efficiency of photoconductive X-ray detectors. Med Phys 28:2039

    PubMed  CAS  Google Scholar 

  78. Rababani M, Shaw R, van Metter R (1987) Detective quantum efficiency of imaging systems with amplifying and scattering mechanisms. J Opt Soc Am A4:1156

    Google Scholar 

  79. Papoulis A (1991) Probability, random variable stochastic process, 3rd edn. McGraw Hill, New York

    Google Scholar 

  80. Quinon AR, Anderson CE and Knox WJ (1959) Fluorescent response of cesium iodide crystals to haevy ions. Phys Rev 115:886

    CAS  Google Scholar 

  81. Birks JB (1964) The theory and practice of scintillators. Pergamon Press, London, p 439

    Google Scholar 

  82. Hoek H (1992) Ph.D. thesis, Chalmers University of Technology, Gothenburg

    Google Scholar 

  83. Parlog M (2002) Response of CsI scintillators over a large range in energy and atomic number of ions. Nucl Instrum Methods Phys Res A 482(3):674

    CAS  Google Scholar 

  84. Scheiber C (2000) CdTe and CdZnTe detectors in nuclear medicine. Nucl Instrum Methods Phys Res A 448(3):513–524

    CAS  Google Scholar 

  85. Fornaro L et al. (2004) Growth of bismuth tri-iodide platelets for room temperature X-ray detection. IEEE nuclear science symposium conference, Rome, Italy, 16–22 Oct 2004, vol 7, p 4560

    Google Scholar 

  86. Gupta T et al (2000) X-ray security system, NIST funded joint program, Varian Medical Syst., Palo Alto, RMD, Water Town and Xerox Research, Palo Alto. Final Report NIST

    Google Scholar 

  87. Slapa M, Huth GC, Seibet W, Scieberand MM, Randtka PT (1976) Capabilities of mercuric iodide as a room temperature X-ray detector. IEEE Trans Nucl Sci NS-23:102

    Google Scholar 

  88. Schieber MM, Beinglass I, Dishon G, Holzer A, Yaron G (1978) Bulk performance of improved mercuric iodide nuclear detectors. IEEE Trans Nucl Sci NS-25:644

    Google Scholar 

  89. Bao XJ, Schlesinger TE, James RB (1995) Electrical properties of mercuric iodide, Chapter 4. In: Schlesinger TE, James RB (eds) Semiconductor and semimetals, vol 43. Academic, San Diego

    Google Scholar 

  90. Baciak JE, He Z, Devito RP (2002) Electron trapping variations in single crystal pixelated HgI2 gamma ray spectrometers. IEEE Nucl Sci Symp 4:2335

    CAS  Google Scholar 

  91. Ali MH, Siffert P (1995) Characterization of CdTe nuclear detector materials. In: Schlesinger T, James RB (eds) Semiconductor and semimetals. Academic, San Diego

    Google Scholar 

  92. Quaranta A, Caali C, Ottaviani G (1970) A 40 keV pulsed electron accellator. Phys Rev Sci Instrum 41:1205

    Google Scholar 

  93. Stuck R (1975) Ph.D. thesis, Universite’ Louis Pasteur, Strasbourg

    Google Scholar 

  94. Hecht K (1932) Zum mechanismus des lichtelektrischen primingless in isolierenden kristallen. Zeitchr Phys 77:235

    CAS  Google Scholar 

  95. Martini J, Mayer W, Zanio KR (1972) Drift velocity and trapping in semiconductors – transit charge technique. Appl Solid State Phys 3:181

    CAS  Google Scholar 

  96. Zuck A, Schieber MM, Khakhan O, Burshtein Z (2002) Delayer emission of surface generated trapped carriers in transient charge transport of single crystal and polycrystalline HgI2. In: Proceedings of SPIE, in hard X-ray gamma ray detector physics IV, conference, Seattle, 2002

    Google Scholar 

  97. Dardenne YX, Wang TF, Lavietes AD, Mauger GJ, Ruhter WD, Kreek SA (1999) Cadmium zinc telluride spectral modeling. Nucl Instrum Methods Phys Res A 422:159

    CAS  Google Scholar 

  98. Yeargan JR, Taylor H (1968) The Polle-Frankel effect with compensation present. J Appl Phys 39:5600

    CAS  Google Scholar 

  99. Prettyman TH (1999) Method of mapping charge pulses in semiconductor radiation detector. Nucl Instrum Methods Phys Res A 422:232

    CAS  Google Scholar 

  100. Bell GI, Glasstone S (1970) Nuclear reactor theory. Van Nostrand Reinhold, New York

    Google Scholar 

  101. Arfken G (1966) Mathematical methods for physicists. Academic, New York

    Google Scholar 

  102. White TL, Miller WH (1999) A triple-crystal phoswich detector with digital pulse shape discrimination for alpha/beta/gamma spectroscopy. Nucl Instrum Methods A 422:144

    CAS  Google Scholar 

  103. Rose A (1953) Quantum and noise limitations of the visual process. J Opt Soc Am 43:715

    PubMed  CAS  Google Scholar 

  104. Cunningham IA (1997) Analyzing system performance. In: Frey GD, Sprawls P (eds) Expanding role of medical physics in diagnostic imaging. Advanced Medical Publishing for American Association of Physicists in Medicine, Madison, p 231

    Google Scholar 

  105. Samei E, Flynn MJ (2003) An experimental comparison of detector performance for direct and indirect digital radiography systems. Med Phys 30(4):608

    PubMed  Google Scholar 

  106. Samei E, Ranger NT, Dobbins JT III, Chen Y (2006) Intercomparison of methods for imaging quality characterization. I. Modulation transfer function. Med Phys 33:1454

    PubMed  Google Scholar 

  107. Rose A (1953) Quantum and limitations of the visual process. J Opt Soc Am 43(715)

    Google Scholar 

  108. Cunningham IA, Shaw R (1999) Comparison of observer performance at 15 and 30 fps for reducing rates. J Opt Soc Am A 16(3):621

    Google Scholar 

  109. Campbell N (1909) The study of discontinuous phenomena. Proc Camb Philos Soc 15:117

    Google Scholar 

  110. Schottky W (1918) Uber spontane stromschwankungen in verschiedenen electrizitatsleitern. Ann Phys 57:541

    Google Scholar 

  111. Hero AO (1991) Timing estimation for a filtered Poisson process in Gaussian noise. IEEE Trans Inform Theory 37(1):92

    Google Scholar 

  112. Beenakker C, Schonenberger C (2003) Quantum shot noise. Phys Today 56:37

    Google Scholar 

  113. Buttiker M (1990) Scattering approach to thermal and excess noise in open multipore conductors. Phys Rev Lett 65:2901

    PubMed  Google Scholar 

  114. Houten HV, Beenakker C (1996) Phys Today, 22

    Google Scholar 

  115. Imad A, Orsal B, Alabedra R (2001) Experimental study of current noise spectral density versus dark current in CdTe:Cl and CdZnTe detectors. In: Bosman G (ed) Proceedings of the 16th international conference on noise in physical systems and 1/f fluctuations, ICNF, Gainesville, 2001

    Google Scholar 

  116. Gupta TK (2003) Handbook of thick and thin film hybrid microelectronics. Wiley, Hoboken, p 14, 48, 147

    Google Scholar 

  117. Spieler H (2004) Low noise electronics. Rev Part Phys Lett B 592:1

    Google Scholar 

  118. Lowen SB, Teich MC (1989) Generated 1/f shot noise. Electron Lett 25(16):1072

    Google Scholar 

  119. Gray PR, Meyer RG (1993) Analysis and design of integrated circuits, 3rd edn. Wiley, New York, Chapter 11

    Google Scholar 

  120. Jaeger RC, Broderson AJ (1970) Low frequency noise sources in bipolar transistors. IEEE Trans Electron Dev ED-17:128

    Google Scholar 

  121. Ingold G-L, Nazarov YuV (1992) Coulomb Blockade phenomena in nano-structure. In: Grabert H, Devoret MH (eds) Single charge tunneling. Plenum Press, New York

    Google Scholar 

  122. Blanter YM, Buttiker M (2000) Shot noise in mesocospic conductors. Phys Rep 336:1

    CAS  Google Scholar 

  123. Reulet B, Senzier J, Prober DE (2003) Noise thermal impedance of a diffusive wire. Phys Rev Lett 91:196601

    PubMed  CAS  Google Scholar 

  124. Pizurica A, Philips W, Lemahieu I, Acheroy M (2003) A versatile wavelet domain noise filtration technique for medical imaging. IEEE Trans Med Imaging 22(3):323

    PubMed  Google Scholar 

  125. Wagner RF, Smith SW, Sandrik JM, Lopez L (1983) Statistics of speckle in ultrasound B-scans. IEEE Trans Sonics Ultrason 30(3):136

    Google Scholar 

  126. Achim A, Bezerianos A, Tsakalides P (2001) Novel Bayesian multiscale method for speckle removable in medical ultrasound images. IEEE Trans Med Imaging 20(8):772

    PubMed  CAS  Google Scholar 

  127. Jain AK (1989) Fundamental of digital image processing. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  128. Nowak RD (1999) Wavelet based rician noise removable for magnetic resonance imaging. IEEE Trans Image Proc 8:1408

    CAS  Google Scholar 

  129. Luke PN, Amman M, Lee JS (2001) Factors affecting energy resolution of coplanar grid CdZnTe detectors. IEEE Trans Nucl Sci 48:282

    CAS  Google Scholar 

  130. Luke PN, Amman M, Lee JS (2004) Factors affecting energy resolution of coplanar grid CdZnTe detectors. IEEE Trans Nucl Sci 51(3):1199

    CAS  Google Scholar 

  131. Bushberg JT, Seibert JA, Leidholdt EM Jr, Boone JM (2002) The essential physics of medical imaging. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  132. Yu DF, Fessler JA (2002) Mean variance of coincidence counting with dead time. Nucl Instrum Methods A 488:362

    CAS  Google Scholar 

  133. Lee SH, Gardner RP, Jae M (2004) Determination of dead times in the recently introduced hybrid G-M counter dead time model. J Nucl Sci Technol Suppl 4:156

    Google Scholar 

  134. Knoll GF (2000) Radiation detection and measurements, 3rd edn. Wiley, New York

    Google Scholar 

  135. Lee SH, Gardner RP, Jae M (2004) Determination of dead times in the recently introduced hybrid G-M counter dead time model. Nuclr Suppl 4:156–159

    Google Scholar 

  136. Muller JW (1973) Dead time problems. Nucl Instrum Methods 112:47

    Google Scholar 

  137. Lee SH, Gardner RP (2000) A new G-M counter dead time model. Appl Radiat Isot 53:731

    PubMed  CAS  Google Scholar 

  138. Castelletto SA, Degiovanni IP, Schettini V, Migdall AL (2007) Reduced dead time and higher rate photon counting detection using a multiplexed detector array. J Mod Opt 54:337–352

    Google Scholar 

  139. Rochase A, Besse P, Popovic R (2002) Actively recharged single photon counting avalanche CMOS photodiode with less than 9 ns dead time. In: The 16th European conference on solid state transducers, Prague, 2002

    Google Scholar 

  140. Gisin N, Ribordy G, Tittel W, Zbinden H (2002) Quantum cryptography. Rev Mod Phys 74:145

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gupta, T.K. (2013). Mathematical Modeling of Radiation. In: Radiation, Ionization, and Detection in Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34076-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34076-5_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34075-8

  • Online ISBN: 978-3-642-34076-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics