Skip to main content

Radiation Exposure: Consequences, Detection, and Measurements

  • Chapter
  • First Online:
Radiation, Ionization, and Detection in Nuclear Medicine
  • 2528 Accesses

Abstract

Exposure to Radiation Energy: The materials existing on Earth are exposed to both natural and man-made radiation. Natural background radiation comes from three primary sources: cosmic radiation, external terrestrial radiation, and radon radiation. In addition to these radiations, there are man-made radiations that come from medical X-rays, gamma rays, nuclear medicine, (radionuclides/isotopes), and consumer products [1]. A schematic of the sources of radiation exposure that all the living and the nonliving materials are exposed to is listed below in Fig. 2.1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barth JL, Dyer CS, Stassinopoulos EG (2003) Space, atmospheric and terrestrial radiation events. IEEE Trans Nucl Sci 50(3):466 and also Streffer C (1997) Health impact of large releases of radionuclides, biological effects of parental irradiation. Ciba Foundation Symp 203:155 and Biological effects of inhaled radionuclides ICRP Pu, 31 July 2007 and Carlson TM et al (2001) Radionuclide contamination at Kazakhstan’s Semipalatinsk Test Site: implications on human and ecological health, 2001 (US Dept. of Energy) and Larsson E, Meerkhan SA, Strand SE, Jonsson BA (2021) A small scale anatomic model for testicular radiation dosimetry for radionuclides localized in human testes. J Nucl Med 53(10):72

    Google Scholar 

  2. Velinov PIY, Mateev LN (2008) Improved cosmic ray ionization model for the system ionosphere—atmosphere—calculation of electron production rate profiles. J Atmos Solar-Terrest Phys 70(2–4):574 and also ONeill PM (2010) Badhwar-ONeill 2010 galactic cosmic ray flux model—revised. IEEE Trans Nucl Sci 57(6):3148

    Google Scholar 

  3. Rando R et al (2004) Radiation testing of GLAST LAT tracker ASICs. IEEE Trans Nucl Sci 51(3):1067

    CAS  Google Scholar 

  4. Health Risks from Exposure to low level Ionizing Radiation (2006) BEIR VII, Phase 2, The National Academy Press, Washington, D.C. and also U.S. Nuclear Regulatory Commission (2011) Principle people and the environment. 17 Oct 2011

    Google Scholar 

  5. Eisberg RM (1961) Excited states of atom, Chapter 13. In: Fundamentals of modern physics. Wiley, New York and also Loaharanu P, Thomas P (2001) Irradiation for food safety and quality. Technomic Pub. Co., Lancaster

    Google Scholar 

  6. Knoll GF (2000) Radiation sources, Chapter 1. In: Radiation detection and measurements, 3rd ed. Wiley, New York and also Bertell R (1985) Nuclear radiation and its biological effects. The Book Pub. Co., Tennessee, p 15

    Google Scholar 

  7. Halliday D, Resnick R (1981) Electromagnetic waves, Chapter 38. In: Fundamentals of physics, 2nd edn. Wiley, New York and also Bethe H, Ashkin J (1953) Passage of radiation through matter. In: Segre E (ed) Experimental nuclear physics, vol I. Wiley, New York, pp 167–357

    Google Scholar 

  8. Crosbie WA, Gittus JH (1989) Medical response to effects of Ionizing radiation. Elsevier Appld. Sci. and also Biological effects of radiation and units of dose. In: Radiation safety manual. Stanford Univ. Palo Alto Health Care Syst. 20910, CA, p 19

    Google Scholar 

  9. Mettler FA, Upton AC (2008) Medical effects of ionizing radiation. Elsevier Sci. Pub., New York and also Boice Jr JD, Fraumeni Jr JF (1984) Radiation carcinogenesis. Raven Press, New York

    Google Scholar 

  10. Wolbarst A (2000) Physics of radiology. Medical Physics Pub., Madison and also Wilson R (1995) Effects of ionizing radiation at low doses. In: Metter FA, Upton AC. 2nd edn. W.B. Saunders, Philadelphia

    Google Scholar 

  11. Salvato JA, Leonard N (2003) Environmental engineering. Wiley, Hoboken and also Advanced nuclear reactor safety issues and research needs. In: Workshop Proc., Paris, 18–20 Feb 2002. Int. Atomic Energy Agency (AIEA and IAEA Pub.)

    Google Scholar 

  12. Lloyd DC, Dolphin GW (1977) Radiation induced chromosome damage in human lymphocytes. Br J Ind Med 34(4):261

    PubMed  CAS  Google Scholar 

  13. Jagetia GC, Venkatesha VA, Reddy TK (2003) Naringin a citrus flavonone protects against radiation induced chromosome damage in mouse bone marrow. Mutagenesis 18(4):337

    PubMed  CAS  Google Scholar 

  14. Pshenichnov I, Mishustin I, Greiner W (2005) Neutron from fragmentation of light nuclei in tissue like media. Phys Med Biol 50:5493

    PubMed  Google Scholar 

  15. Nagamine K, Torakai E, Shirnomura K, Ikedo Y, Schultz JS (2009) Molecular radiation biological effect in wet protein and DNA observed in the measurements of labeled electron with muons. Phys B Cond Matt 494(5–7):553

    Google Scholar 

  16. Stisova V, Goffmont S, Maurizot MS, Davidkova M (2006) Radiation damage to DNA protein specific complexes. Radiat Prot Dosimetry 122(1–4):106

    PubMed  Google Scholar 

  17. Ben-Ishay Z, Prindull G, Yakelev S, Sharon S (2008) Cumulative bone marrow stromal damage caused by X-ray irradiation. Med Oncol 7(1):55

    Google Scholar 

  18. Valentin J (2003) RBE, quality factor, radiation weighting factor. Ann ICRP 33(4):1

    Google Scholar 

  19. Leo WR (2005) Techniques for nuclear and particle physics experiments. Springer, Germany, p 71

    Google Scholar 

  20. Ignarro LJ (ed) (2000) Nitric oxide biology and pathobiology. Academic, San Diego

    Google Scholar 

  21. Gordon MY, Amos TAS (1996) Stochastic effects in hemopoiesis. Stem Cells 12(2):175

    Google Scholar 

  22. Nowakowski B, Lemarchand A (2001) Stochastic effects in a thermochemical system with Newtonian heat exchange. Phys Rev 64(6):061108

    CAS  Google Scholar 

  23. Darnell J, Lodsh H, Baltimore D (1986) Molecular cell biology. Scientific American Books, New York, p 80

    Google Scholar 

  24. Arlett CF et al (2006) Chemical and cellular ionizing radiation sensitivity in patient with XP. Br J Radiol 79(942):510

    PubMed  CAS  Google Scholar 

  25. Kim GJ, Chandrasekaran K, Morgan WF (2006) Mitochondrial dysfunction persistently elevated levels of reactive oxygen species and radiation induced genomic instability: a review. Mutagenesis 21(6):361

    PubMed  CAS  Google Scholar 

  26. Limoli CL et al (2003) Persistent oxidative stress in chromosomally unstable cells. Cancer Res 63:3107

    PubMed  CAS  Google Scholar 

  27. Bennard M et al (2008) Review analysis of radiation induced degradation observed for input bias current of linear integrated circuit. IEEE Trans Nucl Sci 55(6):3174

    Google Scholar 

  28. Schwank JR, Cavrois VF, Shaneyfelt MR, Piallet P, Dodd PE (2003) Radiation effects in SOI technologies. IEEE Trans Nucl Sci 50(3):522

    CAS  Google Scholar 

  29. Shapiro J (2002) Radiation protection, 4th edn. Harvard Press, Cambridge

    Google Scholar 

  30. Re V et al (2010) Mechanisms of noise degradation in low power 65 nm CMOS transistors exposed to ionizing radiation. IEEE Trans Nucl Sci 57(6):3071 and also Cooper WJ, Curry RD, O’Shea KE (1998) Environmental applications of ionizing radiation. Wiley, New York

    Google Scholar 

  31. Cress CD et al (2010) Radiation effects in single walled carbon nanotube thin-film transistors. IEEE Trans Nucl Sci 57(6):3040 and also Real A et al (2004) Effects of ionizing radiation exposure to plants. J Radiol Phys Prot 24:A123 and Dengel S, Aeby D, Grace J (2009) A relationship between galactic cosmic radiation and tree rings. New Phytologist 184(3):545

    Google Scholar 

  32. Mulvey S. Wild life defects Chernobyl radiation. BBC News

    Google Scholar 

  33. Kryshev II (1995) Radioactive contamination of aquatic tic eco systems following Chernobyl accident. J Environ Radiol 27:207–219

    CAS  Google Scholar 

  34. Mould RF (2000) Chernobyl record: the definitive history of the Chernobyl catastrophe. CRC Press, Boca Raton

    Google Scholar 

  35. Seifriz W (2005) Reaction of protoplasm radiation. 25(1):196. Springer-Wien, Pub., Germany

    Google Scholar 

  36. Gopinath DV (2007) Radiation effects, nuclear energy, and comparative risks. Curr Sci 93(9):1230

    CAS  Google Scholar 

  37. Goans RE et al (1996) Dose estimation using Lymphocyte depletion kinetics, Armed Forces Radiobiology Research Institute Workshop, Washington, 25–27 Sept 1996

    CAS  Google Scholar 

  38. Coans CE, Holloway CE, Bayer EM, Ricks RC (1997) Early dose assessment following severe radiation accidents. Health Phys 72(4):513–518

    Google Scholar 

  39. Oldham TR, Mclean FB (2003) Total ionizing dose effects in MOS oxides and devices. IEEE Trans Nucl Sci 50(3):483

    CAS  Google Scholar 

  40. Li Z (1995) Experimental comparisons among various models for reverse annealing of the effective concentration of ionized space charges of neutron irradiated silicon detectors. IEEE Trans Nucl Sci 36:1825 and also Gerardin S, Paccagnella A (2010) Present and future non-volatile memories for space. IEEE Trans Nucl Sci 57(6):3016

    Google Scholar 

  41. Srour JR, Marshall CJ, Marshall PW (2003) Review of displacement damage effects in silicon devices. IEEE Trans Nucl Sci 50(3):653

    CAS  Google Scholar 

  42. Chaudhari P, Bhoraskar SV, Padgavkar S, Bhoraskar VN (1991) Comparison of defects produced by 14-MeV neutrons and 1-MeV electrons in n-type silicon. J Appl Phys 70(3):1261

    CAS  Google Scholar 

  43. Jones R, Carvalho A, Goss JP, Bidden PR (2009) The self interstitial in silicon germanium. Mater Sci Eng 159–160:112

    Google Scholar 

  44. Summers GP, Burke EA, Dale CJ, Wolicki FA, Marshall PW, Gehlhausen MA (1987) Correlation of particle induced displacement in silicon. IEEE Trans Nucl Sci NS-34(6):1134 and also Keiter ER, Russo TV, Hembree CE, and Kambour KE (2010) A Physics based device model of transit neutron damage in bipolar transistor. IEEE Trans Nucl Sci 57(6):3305

    Google Scholar 

  45. Myjack MJ, Seifert CE (2008) Real time Compton imaging for gamma ray tracker handheld CZT detector. IEEE Trans Nucl Sci 55(2):769

    Google Scholar 

  46. Pickel JC, Kalma AH, Hopkinson GR, Marshall CJ (2003) Radiation effects on photonic images. IEEE Trans Nucl Sci 50(3):671

    CAS  Google Scholar 

  47. Hopkinson GR, Dale CJ, Marshall P (1996) Proton effects in CCDs. IEEE Trans Nucl Sci 43:614 and also Philbrick RH (2002) Modeling the impact of preflushing on CTE in proton irradiated CCD-based detector. IEEE Trans Nucl Sci 49(2):559

    Google Scholar 

  48. Prigozhin G et al (2000) Characterization of radiation damage in Chandra X-ray CCDs. Proc SPIE 4140:123

    Google Scholar 

  49. Akkerman JB, Chadwick MB, Levinson J, Murat M, Lifshitz Y (2001) Updated NIEL calculations for estimating the damage induced by particles and γ-rays in Si and GaAS. Radiat Phys Chem 62:301

    CAS  Google Scholar 

  50. Dowsett DJ, Kenny PA, Eugene R (1998) The physics of diagnostic imaging. Chapman & Hall Medical, Gt. Britain

    Google Scholar 

  51. Theuwissen JP (1995) Solid state imaging with charge coupled devices. Kluwer, Dordrecht/London

    Google Scholar 

  52. Bross AD, Pla-Dalmau A (1994) Radiation effects in plastic scintillators and fibers. Int Conf Cal. In HEP, Fermi Nat. Lab., Oct 1994, Final Rept. 91/74

    Google Scholar 

  53. Marini G et al (1985) Radiation damage to organic scintillation materials. CERN Int. Rept. 85–08

    Google Scholar 

  54. Kozma P, Kozma P Jr (2004) Radiation resistance of heavy scintillators to low energy. Radiat Phys Chem 71(3–4):705–707

    Google Scholar 

  55. Marcillac PD, Corn N, Dambier G, Leblanc J, Moalic J-P (2003) Experimental detection of alpha particles from radioactive decay of natural bismuth, Letts. To Nature 422:876 and also Mann WB (1978) NCRP Report 58, A handbook of radioactivity measurements procedures, section 3.7, National Council on Radiation Protection and Measurements, Washington, D.C.

    Google Scholar 

  56. Baschenko SM (2004) Remote optical detection of alpha particle source. J Radiol Prot 24:75 and also Semkow TM, Parekh PP (2001) Principle of gross alpha and beta radioactivity detection in water. Health Phys 81(5):587

    Google Scholar 

  57. Hobzova L, Patel M, Spuray Z (1983) TSEE detection of alpha and beta radiation. Radiol Prot Dosimetry 4(3–4):137 and also Jesse WP, Sadauskis J (1995) Ionization impure gases and the average energy to make pair for alpha and beta particles. Phys Rev 97(4):1668

    Google Scholar 

  58. L’ Annunziata MF, ElBaradei HM, Burkart W (2003) Hand book of radioactivity analysis. Elsevier Sci. & Technol., New York and also Toh K, Yamagishi H, Sakasai N, Nakamura TN, Soyama K (2009) Development of two dimensional micropixel gas chamber capable of individual line readout for neutron measurements. In: IEEE nuclear science symposium and medical imaging, Orlando, 25–31 Oct 2009

    Google Scholar 

  59. Cullum BM, Mobley J, Bogard JS, Moscovitch M, Phlys GW, vo-Dinh T (2001) Detection of neutrons using novel three-dimensional optical random access memory technology. SPIE Proc 4199:165–172 and also Ebisu T, Watanabe T (2003) Cryogenic detection of neutron using superheated superconducting tin granules. Nucl Instrum Methods A503(3):589

    Google Scholar 

  60. Campion PJ (1971) The operation of proportional counters at low pressures for micro density. Phys Med Biol 16:611

    Google Scholar 

  61. Fischer BE (1977) Nucl Instrum Methods 141:173

    Google Scholar 

  62. Westphal GP (1976) Nucl Instrum Methods 134:387

    Google Scholar 

  63. Knoll GF (2000) Radiation detection and measurement, 3rd edn. Wiley, Hoboken, p 189

    Google Scholar 

  64. Borkowski CJ, Kopp MK (1970) Some applications and properties of one and two dimensional position sensitive proportional counters. IEEE Trans Nucl Sci NS-17(3):340

    Google Scholar 

  65. Stelzer H (1976) Nucl Instrum Methods 133:409

    CAS  Google Scholar 

  66. Emery EW (1966) Geiger-Muller and proportional counters. In: Attix FH, Rosech WC (eds) Radiation dosimetry, vol II. Academic, New York

    Google Scholar 

  67. Wilkinson DH (1950) Ionization chambers and counters. Cambridge University Press, London

    Google Scholar 

  68. RCA Photomultiplier Manual Technical series (1970) PT-61, RCA Solid State Division, Electro optics and Devices, Lancaster, 1970 and also Photomultiplier tube, principle to application (1994) Hamamatsu Photonics, K.K.

    Google Scholar 

  69. Knall HR, Persy DE (1972) Recent work on fast photomultipliers utilising GaP(Cs) dynodes. IEEE Trans Nucl Sci NS-19(3):45

    Google Scholar 

  70. Simon RE, Williams BF (1968) Secondary electron emission. IEEE Trans Nucl Sci NS-15:167

    Google Scholar 

  71. Melntyre RJ (1961) Theory of micro-plasma instability in silicon. J Appl Phys 32(6):983 and also Goetberger A et al (1963) Avalanche effects in silicon p-n junctions II. Structurally perfect junctions. J Appl Phys 34(6):1591

    Google Scholar 

  72. Gulinatti A et al (2005) Time resolution at room temperature with large area single photon avalanche diode. Electr Lett 41(5):272 and also Dautet H et al (1993) Avalanche effects in silicon p-n junctions II. Structurally perfect junctions. J Appl Opt 32(21):3894

    Google Scholar 

  73. McNally D, Golovin V (2008) Review of solid state photomultiplier developments by CPTA and photonique SA. Nucl Instrum Methods A-140:5

    Google Scholar 

  74. Buzhan P et al (2003) Silicon photomultiplier and its possible applications. Nuclr Instrum Method 504:48

    CAS  Google Scholar 

  75. Sciacca E et al (2003) Silicon planar technology for single photon detectors. IEEE Trans Electron Dev 50:918

    CAS  Google Scholar 

  76. Ignatov SM, Maneuski DA, Potapov VN, Chirkin VM (2007) A scintillation γ-ray detector based on a solid state photomultiplier. Instrum Exp Technol 50(4):474

    Google Scholar 

  77. Seiferr S et al (2009) Ultra precise timing with SiPM-based TOF PET scintillator detector. IEEE Nuclear Science symposium medical imaging, Orlando, 25–31 Oct 2009

    Google Scholar 

  78. Roberts OJ, Jenkins DG, Joshi P (2009) Nuclear Spectroscopy with novel LaBr3:Ce scintillator and Si-PM detector. In: IEEE transactions on nuclear science symposium medical imaging, Orlando, 25–31 Oct 2009 and also Degenhardt C et al (2009)The digital silicon photomultiplier—a novel sensor for the detection of scintillation light. In: IEEE transactions on nuclear science symposium medical imaging, Orlando, 25–31 Oct 2009

    Google Scholar 

  79. Purghel N, Valcov N (1995) Nucl Instrum Methods B95:7 and also Knoll GF (2000) Radiation detection and measurement, 3rd edn. Chapter 4. Wiley, Hoboken, p 105

    Google Scholar 

  80. Harrer JM, Beckerley JG (1973) Nuclear power reactor instrumentation systems handbook, vol 1, Chapt 5, TID-25952-PI and also Campbell NR, Francis VJ (1946) IEEE 93, Part III

    Google Scholar 

  81. Frame PW (2005) A history of radiation detection instrumentation. Health Phys 88(6):613 and also Knoll GF (2000) Radiation detection and measurement, 3rd edn. Chapter 4. Wiley, Hoboken, NJ, p 109

    Google Scholar 

  82. Kanno I et al (2008) A current mode detector for unfolding X-ray energy distribution. J Nucl Sci Technol 45(11):1165

    CAS  Google Scholar 

  83. Ranger NT (1999) Radiation detector in nuclear medicine. Radiographics 19:48

    Google Scholar 

  84. Ruby L (1994) Further comments on the geometrical efficiency of a parallel disk source and detector system. Nucl Instrum Methods A337:531 and also Purghel L, Valcov N (1995) Particle and energy dependence of the statistical fluctuations of an ionized chamber current. Nucl Instrum Methods B95:7

    Google Scholar 

  85. Knoll GF (2000) Radiation detection and measurement, Chapter 4, 3rd edn. Wiley, New York

    Google Scholar 

  86. Conway AM et al (2009) Si-based pillar structural thermal neutron detectors. In: IEEE nuclear science symposium medical imaging, Orlando, 25–31 Oct 2009

    Google Scholar 

  87. Tremsin AS, Feller WB, Downing RG, Mildner DFR (2004) The efficiency of thermal neutron detection and collimation with microchannel plates of square and circular geometry. IEEE Trans Nucl Sci 512:1020

    Google Scholar 

  88. McGregor DS et al (2004) Design considerations for thin film coated semiconductor thermal neutron detectors. Nucl Instrum Methods A500:272

    Google Scholar 

  89. Friedrich H, Dangendrof V, Demian AB (2002) Position sensitive thermal neutron detector with Li-6-foil converter coupled to wire chambers. Appl Phys A Mater Sci Proc 74:S124

    CAS  Google Scholar 

  90. Izumi N et al (2003) Development of a gated scintillation fiber neutron detector for areal density measurements of inertial confinement fusion capsules. Rev Sci Instrum 74:1722

    CAS  Google Scholar 

  91. Price WJ (1964) Nuclear radiation detection, 2nd edn. Chapt-10, McGraw Hill, New York, and Allen WD (1960) Neutron detection. George Newnes, Ltd., London

    Google Scholar 

  92. Tremsin AS, Feller WB, Downing RG (2004) Efficiency optimization of neutron imaging detectors with 10B doped MCPs. Nucl Instrum Methods A500:269

    Google Scholar 

  93. Boyace NO, Kowash BR, Wehe D (2009) Thermal neutron imaging with a rotationally modulated collimator. In: IEEE nuclear science symposium, Orlando, 25–31 Oct 2009

    Google Scholar 

  94. Gersch HK, McGregor DS, Simpson PA (2002) A study of the effect of incremental gamma ray doses and incremental neutron fluences upon the performance of self-biased 10B coated high purity epitaxial GaAs thermal neutron detector. Nucl Instrum Methods A489:85

    Google Scholar 

  95. Fuller WB, Downing RG, White PL (2000) Neutron field imaging with microchannel plates. Proc SPIE 4141:291

    Google Scholar 

  96. Abdushukurov DA et al (1994) Model calculation of efficiency of gadolinium based converters of thermal neutrons. Nucl Instrum Methods B84:400

    Google Scholar 

  97. Knoll GF (2000) Radiation detection and measurements, 3rd edn. Chapter 5, Wiley, New York, p 148

    Google Scholar 

  98. Boag JW (1966) Ionization chambers. In: Attix FH, Roesch WC (eds) Radiation dosimetry, vol II. Academic, New York

    Google Scholar 

  99. Torii T (1995) Ionization efficiency of a gas flow ion chamber used for measuring radioactive gases by Monte Carlo simulation. Nucl Instrum Methods A-356:255 and Knoll GF (2000) Radiation detection and measurements, 3rd edn. Chapter 5, Wiley, New York, p 152

    Google Scholar 

  100. Friedlander G, Kennedy JW, Macias ES, Miller JM (1981) Nuclear and radiochemistry, 3rd edn. Wiley, New York, p 363

    Google Scholar 

  101. Goulding FS, Landis DA (1974) Semiconductor detector spectrometer electronics. In: Cerny J (ed) Nuclear spectroscopy and reactions part a. Academic, New York

    Google Scholar 

  102. Sze SM (ed) (1998) Modern semiconductor device physics. Wiley, New York, pp 353–382

    Google Scholar 

  103. Rossi BB, Staub HH (1949) Ionization chambers and counters. McGraw-Hill, New York

    Google Scholar 

  104. Burns DT, Buermann L (2009) Free air ionization chamber. Metrologia 46:S-9

    Google Scholar 

  105. Boag JW (1966) Introduction to radiological physics and radiation domsimetry. Ionization chambers. Rad. Dosi. vol II. In: Ahix FH, Roech WC (eds) Academic Press, New York, pp 1–72

    Google Scholar 

  106. Greening JR (1960) A compact free air chamber for use in the range 10–50 kV. Br J Radiol 33:178

    PubMed  CAS  Google Scholar 

  107. Buermann L, Grosswent B, Kramer H-M, Selbach H-J, Gerlach M, Hoffmann M, Krumrey M (2006) Measurement of the X-ray mass energy absorption coefficient of air using 3 keV to 10 keV synchrotron radiation. Phys Med Biol 51(5125)

    Google Scholar 

  108. Hasegawa M et al (2008) Initial plasma produced by Townsend avalanche breakdown on QUEST tokamak. Jpn J Appl Phys 47:287

    CAS  Google Scholar 

  109. Knoll GF (2000) Radiation detection and measurement, 3rd edn. Wiley, New York, p 173, Chapter-6

    Google Scholar 

  110. Knoll GF (2000) Radiation detection and measurement, 3rd edn, Chapter 4. Wiley, New York, p 112

    Google Scholar 

  111. Platt U, Stutz J (2010) Differential optical absorption spectroscopy. Springer, New York

    Google Scholar 

  112. Welz B, Sperling M (1999) Atomic absorption spectroscopy. Wiley VCH, Weinheim

    Google Scholar 

  113. Twyman RM (2000) Atomic emission spectroscopy. Elsevier, New York

    Google Scholar 

  114. Ross CB, Frdeen KJ (1997) Concepts, instrumentation and techniques in inductively coupled plasma optical spectroscopy, 2nd ed. Perkin Elmer, Cambridge

    Google Scholar 

  115. Smith ZJ, Berger AJ (2008) Integrated Raman angular scattering magnetic angular microscopy. Opt Lett 3(7):714 and also Gardiner DJ (1989) Practical Raman spectroscopy. Springer, New York

    Google Scholar 

  116. Vink R (1997) Magnetic resonance spectroscopy. In: Reilly P, Bullock R (eds) Head injury. Chapman & Hall, London

    Google Scholar 

  117. Emsley JW, Feeney J (2012) Progress in nuclear magnetic resonance spectroscopy. Elsevier, New York

    Google Scholar 

  118. Downard KM (2007) Historical account: Francis William Aston, the man behind the mass spectroscopy. Eur J Mass Spectrom 13(3):177

    CAS  Google Scholar 

  119. Coy SL et al (2010) Detection of radiation – exposure biomarkers by differential mobility prefiltered mass spectrometry. Int J Mass Spectrom 291:108

    PubMed  CAS  Google Scholar 

  120. Gupta TK et al (2004) LuI3:Ce—a new scintillator for gamma ray spectroscopy. IEEE Trans Nucl Sci 51(5):2302

    Google Scholar 

  121. Gupta TK et al (2002) RbGd2Br7:Ce scintillators for gamma ray and thermal neutron. IEEE Trans Nucl Sci 49(4):1655

    Google Scholar 

  122. Rapach TA, Pelcher MA. Gamma ray spectroscopy. Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627

    Google Scholar 

  123. Brooks FD, Klein H (2002) Neutron spectrometry–historical review and present status. Nucl Instrum Methods Phys Res A 476:1

    CAS  Google Scholar 

  124. Kaschuck YA, Esposito B, Trykov LA, Semenov VP (2002) Fast neutron spectrometry with organic scintillators applied to magnetic fusion experiments. Nucl Instrum Methods Phys Res A 476:511

    CAS  Google Scholar 

  125. Chichester DL, Johnson JT, Seabury EH (2010) Measurement of the neutron spectrum of a DD electronic neutron generator’. In: 21st international conference on application of accelerators in research and industry, 2010, INL/CON-10-18572

    Google Scholar 

  126. Chichester DL et al (2009) Active neutron interrogation to detect shielded fissionable material. Appl Radiat Isot 67:1013

    PubMed  CAS  Google Scholar 

  127. Brooks FD et al (2007) A compact high energy neutron spectrometer. Radiat Prot Dosimetry 126(1–4):218

    PubMed  CAS  Google Scholar 

  128. Kaschuck YA, Espositi B, Trykov LA, Semenov VP (2002) Fast neutron spectroscopy with organic scintillators applied to magnetic fusion experiments. Nucl Instrum Methods Phys Res A 476:511

    CAS  Google Scholar 

  129. Kinison JD, Maurer RH, Roth DR, Haight RC (2003) High energy neutron spectroscopy with thick silicon detectors. Radiat Res 159:154

    Google Scholar 

  130. Agosteo S et al (2003) Neutron spectrometry with a recoil radiator – silicon detector devices. Nucl Instrum Methods Res A 515:589

    CAS  Google Scholar 

  131. Franceschini F, Ruddy FH, Petrovic B (2008) Simulation of the response of Silicon Carbide (SiC) fast neutron detectors. Reactor Dosimetry State of the Art 2008, p 128

    Google Scholar 

  132. Franceschini F, Ruddy FH. Silicon carbide neutron detectors. and Strokan N, Ivanov A, Levedev A (2009) Silicon carbide nuclear radiation detectors, SiC power materials, devices and applications. In: Feng Z (ed) Springer, New York, Chapt 11, p 441

    Google Scholar 

  133. Tsuji K, Injuk J, Grieken RV (eds) (2004) X-ray spectrometry: recent technological advances. Wiley, Chichester

    Google Scholar 

  134. McDonald CA, Gibson WM, Peppler WW (2002) X-ray optics for better diagnostic imaging. Technol Cancer Res Treat 1:111

    Google Scholar 

  135. Chettle D (2008) X-ray spectroscopy in medicine. X-Ray Spectrom 37:1–2

    Google Scholar 

  136. Poesner RA, Powsner ER (2006) Essential nuclear medicine physics, 2nd edn. Blackwell Pub, Malden

    Google Scholar 

  137. Owens A et al (2003) Hard X-ray spectroscopy using small-format TlBr array. Nucl Instrum Methods Phy. Res A 497A:359–369 and also Owens et al (2001) Hard X-ray spectroscopy using small format GaAs arrays. Instrum Method Res A 466:168–173

    Google Scholar 

  138. Nirula M et al (2005) Development of nuclear radiation detectors with energy resolution capability on CdTe n+−GaAs heterojunction diodes. IEEE Electron Dev 26(1):8

    Google Scholar 

  139. Tavora LMN et al (2004) Intrinsic limitations in the energy resolution of drift field based radiation detectors. Radiat Phys Chem 71(3–4):723

    CAS  Google Scholar 

  140. Saha GB (2003) Physics and radiology of nuclear medicine. Springer, New York, p 88

    Google Scholar 

  141. Menon VM, Tong W, Forest SR (2004) Control quality factor and critical coupling in microring resonators through interaction of a semiconductor optical amplifier. IEEE Photonic Tech Cells 16(5):1343

    CAS  Google Scholar 

  142. Wheeler JL, Wang W, Tang M (2002) A comparison methods for the measurements of spatial resolution in two-dimensional circular EIT images. Physiol Meas 23:169

    PubMed  Google Scholar 

  143. Steiner G, Watzenin D, Zangl H, Wegleiter H, Fuchs A (2007) In: 13th International conference on electrical bioimpedance and 8th conference on electrical impedance tomography, Graz, Aug 29th–Sept 2nd 2007

    Google Scholar 

  144. Clement GT (2005) Spectral image reconstruction for transcranial ultrasound measurement. Phy Radiat Biol 50(23):5557

    Google Scholar 

  145. Wielopolski L (1994) Monte Carlo calculation of the average solid angle subtended by a parallelepiped. Nuclr Instrum Sci 226:436

    Google Scholar 

  146. Rizk RA, Hathout AM, Hussein ARZ (1986) Solid angle calculation. Nucl Instrum Methods A245:162

    CAS  Google Scholar 

  147. Cook J (1980) Solid angle subtended by two rectangle. Nucl Instrum Methods 178:561

    CAS  Google Scholar 

  148. Particle counting in radioactivity measurements (1994) ICRU Report 52, ICRU Bethesda

    Google Scholar 

  149. Hasegawa T et al (2004) On clock non-paralyzable count-loss model. Phys Med Biol 49:547 and also Diethorn WS (1974) Int J Appl Radiat Isot 25:55 and also Rogers DJ, Bienfang JC, Nakassis A, Xu H, Clark CW (2007) Detector dead-time effects and paralyzability in high speed quantum key distribution. New J Phys 9:319

    Google Scholar 

  150. Apanasovich VV, Paltsev SV. Distortion of photon correlation functions in detection systems with paralyzable dead-time effects and also Muller JW (1974) Nucl Instrum Methods 117:401 and also Ibid 117:401 (1974)

    Google Scholar 

  151. Faraci G, Pennisi AR (1983) Nucl Instrum Methods 212:307 and also Marcikic I, Linares AL, Kurtsiefer C (2006) Free space quantum key distribution with entangled photons. Appl Phys Lett 89:101122

    Google Scholar 

  152. McCormac AM (1962) Nucl Instrum Meth 15:268 and also Currie LA (2004) Detection and quantification limits: basic concepts, international harmonization, and outstanding (low level) issues. Appl Radiat Isot 61:145

    Google Scholar 

  153. Kortov VS, Milman II, Nikiforov SV, Gorelova EA (2000) The use of thermoluminescent detectors for radiation monitoring on territories of atomic power plants. J Int Res Pub ISSN 1311–8978 (1) and also McKeever SWS (1985) Thermoluminescence of solids. Cambridge University Press, Cambridge/London, p 376

    Google Scholar 

  154. Gerson M (1997) Cardiac nuclear medicine, 3rd ed. McGraw Hill, New York

    Google Scholar 

  155. van Kampen RJW, Erdkamp FLG, Peters FPJ (2007) Thorium dioxide related haemangiosarcoma of the liver. J Med 65(8)

    Google Scholar 

  156. Kuzin AM (1963) On the role of DNA in the radiation damage of the cell. Int J Radiat Biol 6(3):201

    PubMed  CAS  Google Scholar 

  157. Tubiana M, Dutreix A (1990) Introduction to radiobiology. Taylor & Francis Ltd., London

    Google Scholar 

  158. Mulkens TH et al (2005) Use of an automatic exposure control mechanism for dose optimization in multidetector row CT examinations. Radiology 237:213

    PubMed  Google Scholar 

  159. Rubin GD, Rofsky NM (2008) Computer tomography and magnetic resonance angiography. Lippincott Williams and Wilkins, New York, 32

    Google Scholar 

  160. Rizzo SMR, Karla MK, Schmidt B (2005) Automatic exposure control techniques for individual dose adaptation. Radiology 235:335

    PubMed  Google Scholar 

  161. Boetter-Jensen L, McKeever SWS, Wintle AG (2003) Optically simulated luminescence dosimetry. Elsevier Pub, Amsterdam

    Google Scholar 

  162. Wrbanek JD, Wrbanek SY, Fralick GC, Chen LY (2007) Microfabricated solid state radiation detectors for active personal dosimetry. NASA/TM 2007–214674

    Google Scholar 

  163. Heyde KL, Heyde KL, Heyde H (2008) Basic ideas and concept in nuclear physics. Taylor & Francis, New York

    Google Scholar 

  164. Evans DR (1963) Statistical fluctuations in nuclear process. Academic, New York, p 761

    Google Scholar 

  165. Hendee VR, Ritenour ER (2002) Probability statistics, medical imaging. Wiley, New York, p 180

    Google Scholar 

  166. Poenaru DN, Greiner W (1977) Experimental techniques in nuclear physics. Walter de Gruyter Inc., Hawthorne, New York

    Google Scholar 

  167. Hoel PG (1954) Introduction to mathematical statistics, 2nd edn. Wiley, New York

    Google Scholar 

  168. Evans RD (1955) The atomic nucleus. Robert Krieger Pub, Malabar

    Google Scholar 

  169. Freedman D, Pisani R, Purves R (1978) Statistics. W.W. Norton Co. Pub, New York

    Google Scholar 

  170. Squires GL (2001) Practical physics. Cambridge University Press, London

    Google Scholar 

  171. Lomax RG (2007) An introduction to statistical concepts, 2nd edn. Routledge Publication, New York

    Google Scholar 

  172. Ruby L et al (1994) Further comments on the geometrical efficiency of a parallel-disk source and detector system. Nucl Instrum Methods A337:531

    Google Scholar 

  173. Mayles P, Rosewald JC, Nahum A (2007) Hand book of radiation therapy physics, theory and practice. Taylor and Francis, Boca Raton

    Google Scholar 

  174. Williams R, Thwaites DI Radiation therapy. Oxford University Press, Oxford, London

    Google Scholar 

  175. Matson J (2011) Fast facts about radiation from the Fukushima Daiichi Nuclear Reactors, Scientific American, 16 Mar 2011

    Google Scholar 

  176. A rare look inside Fukushima Daiichi Nuclear Power Plant, National Geographic, 23 May 2011

    Google Scholar 

  177. Lost City of Chernobyl, English Russia, 13 Sept 2006

    Google Scholar 

  178. Chernobyl: 25 years after nuclear disaster, Huff Post Green, 2 Feb 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gupta, T.K. (2013). Radiation Exposure: Consequences, Detection, and Measurements. In: Radiation, Ionization, and Detection in Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34076-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34076-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34075-8

  • Online ISBN: 978-3-642-34076-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics