Skip to main content

Nuclear Radiation, Ionization, and Radioactivity

  • Chapter
  • First Online:
Radiation, Ionization, and Detection in Nuclear Medicine

Abstract

The history of nuclear medicine—a branch of medicine dealing with radioactive materials and chemicals/die—is rich with the contributions from gifted scientists across different disciplines: physics, chemistry, engineering, and medicine [1–5]. The multidisciplinary nature of nuclear medicine makes it difficult for medical historians to determine the birth date of nuclear medicine. Many historians, however, consider the discovery of artificially produced radioisotopes, used for nuclear radiation therapy, which is a part of nuclear radiation physics as the most significant milestone in nuclear medicine. Indeed, nuclear radiation physics made a dramatic entry into medicine with the discovery of X-rays and natural radioactivity more than a century ago, and the potential for medical imaging and therapy based on these discoveries was very quickly recognized [6]. Nuclear radiation associated with nuclear energy is referred to as ionizing radiation. Figure 1.1 shows the schematic of nonionizing radiation and ionizing radiation and their uses in different fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gupta TK, Antonuk LE et al (2012) Investigation of active matrix flat-panel imagers (AMFPIs) employing thin layers of polycrystalline HgI2 photoconductor for mammographic imaging. SPIE Proceedings, San Diego, 4–9 Feb 2012 and also Gupta TK et al (2004) LuI3:Ce-a new scintillator for gamma ray spectroscopy. IEEE Trans Nucl Sci NS-51 (2302–2305) and also Gupta TK et al (1999) High speed X-ray imaging camera using structured CsI (Tl) scintillator. IEEE Trans Nucl Sci 46(3):232–236

    Google Scholar 

  2. Gupta TK et al (2002) RbGd2Br7:Ce, scintillators for gamma ray and thermal neutron detection. IEEE Trans Nucl Sci NS-49:1655 and also Gupta TK et al (2004) High resolution scintillator spectrometer. IEEE Trans Nucl Sci 51(5):2395

    Google Scholar 

  3. Gerardin S, Paccagnella A (2010) Present and future non-volatile memories for space. IEEE Trans Nucl Sci 57(6):3016

    Google Scholar 

  4. Qu W (2012) Preparation and characterization of L-[5-11C]-Glutamine for metabolic imaging of tumers. J Nucl Med 53(1):98 and also Guerra AS (2004) Ionizing radiation detectors for medical imaging. World Scientific, Singapore

    Google Scholar 

  5. Vanderhoek M, Berlman SB, Jeraj R (2012) Impact of the definition of peak standardized uptake value on quantification of treatment response. J Nucl Med 53(1):4

    Article  PubMed  CAS  Google Scholar 

  6. Curry H (2009) Most radiation oncologists utilizes advanced medical imaging techniques. JACR. 25 Nov 2009 and also Bushberg JT, Siebert JA, Leidholdt EM, Boone JM (2002) Essential physics of medical imaging. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  7. Mukhin KN (1987) Experimental nuclear physics, vols I and II. Mir Pub, Moscow and also Shultis JK, Faw RE (2007) Fundamentals of nuclear science and engineering, 2nd edn. CRC Press, Boaca Raton, Fl

    Google Scholar 

  8. Rogers EM (1960) Physics for the inquiring mind. Princeton University Press, Princeton, Chap. 43, p 682 and also Kahn J (1996) From radioisotopes to medical imaging, history of nuclear medicine written at Berkeley, 9 Sept 1996, Science Articles Archive, Berkeley

    Google Scholar 

  9. National Research Council (2008) Radiation source use and replacement. The National Academy Press, Washington

    Google Scholar 

  10. da EN, Andrade C (1956) The birth of the nuclear atom. Sci Am 195(5):93–107, and also Buddemeier B (2003) CHP, understanding radiation and its effect, U. Calif. Lawrence Livermore Nat. Lab., Under auspices of the DOE Contract # W-7405-Eng-48, June (3-6-2003), UCRL-Pres-149818-Rev-2

    Google Scholar 

  11. Stanev T (2010) Ultra high energy cosmic rays: origin and propagation. Mod Phys Lett A 25(18):1467 and also Lehnerst S (2007) Biomolecular action and ionizing radiation. Institute of Physics, Lehnerst, United Kingdom

    Google Scholar 

  12. Shaviv NJ (2002) Cosmic ray diffusion from Galatic spiral arms. Phys Rev Lett 89(5):051102 and Fermi E (1974) Nuclear physics. University of Chicago, Chicago Chichester; (2004) Springer, Chichester

    Google Scholar 

  13. Ionizing radiation fact book, EPA, USA, EPA 402-F-05-061, March 2008 and also Kume T (2006) Application of radiation in agriculture. Proceedings of international workshop on biotechnology in agriculture, Nong Lam University, Ho Chi Min City, 20–21 Oct 2006

    Google Scholar 

  14. Ouellette J (2011) Discovery news, NASA, 1 Nov 2011, Thirty years of bubble chamber physics, CERN courier, July/Aug 2003, p 19

    Google Scholar 

  15. Glen GF (2000) Radiation detection and measurements, 3rd edn. Wiley, New York, Chap. 2

    Google Scholar 

  16. Shleien B, Terpilak MS (1984) The Health Physics and Radiological Health Handbook. Nucleon Lectern Associates, Olney

    Google Scholar 

  17. Iwai S et al (2005) Calculation of fluence to dose conversion coefficients in partial exposure. Appl Radiat Isot 63(5–6):639

    Article  PubMed  CAS  Google Scholar 

  18. Tack D et al (2007) Dose from adult and pediatric multidetector computer tomography. Springer, New York, p 140

    Book  Google Scholar 

  19. ICRP (2009) Relative biological effectiveness, quality factor (QF), and radiation weighting factor, vol 3394. J. Valentin (ed) Annals of the ICRP Pub. 1992, Elsevier, pp 1–121

    Google Scholar 

  20. (2000) Low-dose of ionizing radiation: biological effects and regulatory control. Int. Conf. in Seville, Spain, 17–21 Nov. 1997 (IAEA TEC.DOC. 976, Pub. Vienna)

    Google Scholar 

  21. Vienot KG, Hertel NE (2007) Photon extremely absorbed dose and kerma conversion coefficients for calibration geometries. Health Phys 92(2):179, Lippincott Hagerstown, MD

    Article  CAS  Google Scholar 

  22. Beyer HE, Kluge HJ, Sherelko VP (1997) X-ray Radiation of Highly Charged Ions, Sept. 19, Springer, Berlin

    Book  Google Scholar 

  23. L’Annunziata MF et al (2003) Handbook of radioactivity. Academic, San Diego, p 1169

    Google Scholar 

  24. Dendy PP, Heaton B (1999) Physics for diagnostic radiology. CRC Press, Boca Raton

    Book  Google Scholar 

  25. National Research Council (US) (2007) Advancing nuclear medicine through innovation. National Academic Press, Washington, DC

    Google Scholar 

  26. Noz ME, Maguire GQ Jr (1999) Radiation protection in health sciences. World Scientific, New York

    Google Scholar 

  27. Mock WG (2005) Introduction to isotope hydrology. Taylor & Francis, New York

    Google Scholar 

  28. Seife C (2000) Science 288(5471):1564

    Article  CAS  Google Scholar 

  29. Hendee WR, Ritenour ER (2002) Medical imaging physics. Wiley, New York, p 28

    Book  Google Scholar 

  30. Bartusiak M et al (1994) A positron named Priscilla. National Academic Press, Washington, DC

    Google Scholar 

  31. Murtagh DJ, Cook DA, Laricchia G (2009) Excited state positronium formation from helium argon and xenon. Phys Rev Lett 102:133202

    Article  PubMed  CAS  Google Scholar 

  32. Cassidy DB, Mills AP Jr (2007) The production of molecular positronium. Nature Lett 449:195

    Article  CAS  Google Scholar 

  33. Boronski E (2006) Positron-electron annihilation rates in electron gas studied by variational Monte Carlo simulation. Euro Phys Lett 75:475

    Article  CAS  Google Scholar 

  34. Gupta TK et al (2004) LuI3:Ce, a new scintillator for gamma ray spectroscopy. IEEE Trans Nucl Sci 51(5):2302

    Article  CAS  Google Scholar 

  35. Gola C et al (2006) Gamma-ray imager for medical imaging. IEEE Nucl Sci Symp 6:3581

    Google Scholar 

  36. Henlee WR, Russell E (2002) Medical imaging. Wiley, Hoboken

    Google Scholar 

  37. Webb S (1988) Physics of medical imaging. CRC Press, Boca Raton

    Book  Google Scholar 

  38. Mayles P, Nahum A, Rosenwald JC (2000) Hand book of radiotherapy physics. Taylor & Francis, New York

    Google Scholar 

  39. Giger ML (2006) Computer aided diagnosis in medical imaging – a new era in image interpretation, business briefing: next generation health care. University of Chicago, Chicago, p 75

    Google Scholar 

  40. Turner JE (2007) Atoms, radiation and protection, 3rd edn. Wiley, Weinheim

    Book  Google Scholar 

  41. Cember H (1996) Introduction to health physics. McGraw Hill, New York

    Google Scholar 

  42. Webb S (2001) The physics of three dimensional radiation therapy. Institute of Physics, London

    Google Scholar 

  43. Kaplan MF (1999) Concrete radiation shielding. Longman Scientific, New York

    Google Scholar 

  44. Shultis JK, Faw RE (1996) Radiation shielding. Prentice Hall, Englewood Cliff, digitized version 2007

    Google Scholar 

  45. Jaeger RG (2007) Engineering compendium on radiation shielding. Springer, Berlin and also Shapiro J (2002) Radiation protection, 4th edn. Harvard University Press, Cambridge

    Google Scholar 

  46. Martin MC (2004) On fusion imaging and multimodalities. National symposium, Kansas, Fgeb, 18–20

    Google Scholar 

  47. Mahn K (2009) Neutrino and antineutrino disappearance in booster neutrino beam line, APS meeting, Denver, 2–5 May 2009

    Google Scholar 

  48. Giunti C, Kim CW (2007) Neutrino physics and astrophysics. Oxford University Press, Oxford

    Book  Google Scholar 

  49. Hanna SS, Lavier EC, Miclass C (1954) Beta- alpha correlation in the decay of lithium (Li)8. Phys Rev 95:110

    Article  CAS  Google Scholar 

  50. Ueza Y, Hashimoto T (2003) New aspects of time interval analysis method in the determination of artificial alpha nuclides. J Rad Ann Nucl Chem 255(1):87

    Article  Google Scholar 

  51. L’Anunziata MF (2000) Radioactivity introduction and history. Elsevier, New York, p 120

    Google Scholar 

  52. Kroeninge K, Pandola L, Tretyak V (2007) Feasibility study of the observation of the neutrino accompanied double beta decay of Ge-76. Ukr J Phys 52:1036

    Google Scholar 

  53. Ando S et al (2004) Neutron beta decay in effective field theory. Phys Lett B 595(1–4):250

    CAS  Google Scholar 

  54. Gerl J (2005) Gamma ray imaging exploiting the Compton effect. Nucl Phys A 752:688C

    Article  CAS  Google Scholar 

  55. Kemeny AA (2004) Gamma knife radio surgery, vol 148 (4), Acta neurochiorursgica. Springer, New York

    Google Scholar 

  56. Cunha RM et al (2000) Two media method for gamma ray attenuation coefficient measurement of archaeological ceramic samples. Appl Radiat Isot 53(6):1011

    Article  Google Scholar 

  57. Khater AEM, Ebaid YY (2008) A simplified gamma ray self attenuation correction in bulk samples. Appl Radiat Isot 66(3):407

    Article  PubMed  CAS  Google Scholar 

  58. Tsoulfanides N (1981) Measurement and detection of radiation. Hemisphere Publishing Corporation, New York

    Google Scholar 

  59. (2008) Mosby’s medical dictionary, 8th edn. Elsevier Health Sci. Elsevier, Amsterdam, Netherlands

    Google Scholar 

  60. Khan FM (2003) The physics of radiation therapy. Lippincott Williams & Wilkins, New York

    Google Scholar 

  61. Shapiro J (2002) Radiation protection. Editorial UPR, p 47

    Google Scholar 

  62. Kruger RL, McCollough CH, Zink FE (2000) Measurements of HVL in X-ray computed tomography. IEEE Proc Annu Conf Eng Med Biol 1(1):98

    Google Scholar 

  63. Maria AF, Caldas LVE (2006) A simple method for evaluation of half value layer variation in CT equipment. Phys Med Biol 51:1595

    Article  Google Scholar 

  64. Bomford CK, Kunkler IH, Walter J, Miller H (2003) Text book on radiotherapy. Elsevier Health Sci, New York, p 155

    Google Scholar 

  65. Liang L, Rinaldi R, Schober H (eds) (2009) Neutron scattering applications and techniques. Springer, New York

    Google Scholar 

  66. Evans RD (1955) The atomic nucleus. McGraw Hill, New York, p 411

    Google Scholar 

  67. Ramstrim E, Goransson PA (1977) Neutron elastic scattering cross section measurements at back angle. Nucl Phys A 284(3):461

    Article  Google Scholar 

  68. Bodansky D (2004) Nuclear energy principles, practice, and prospects. Springer, New York, p 123

    Google Scholar 

  69. Banner TW, Slattery JC (1959) Non-elastic scattering cross section for 8-20 MeV neutrons. Phys Rev 113(4):1088

    Article  Google Scholar 

  70. McNaught AD, Wilkinson A (1977) The gold book, 2nd edn. Blackwell Sci. Pub., Oxford

    Google Scholar 

  71. Tremsin AS, Feller WB, Downing RG, Mildner DF (2005) The efficiency of thermal neutron detection and collimation with microchannel plates of square and circular geometry. IEEE Trans Nucl Sci 52(5):1739

    Article  CAS  Google Scholar 

  72. Keimer B, Sackmann E, Whiters PJ (2002) The case of neutron sources. Science 298:542

    Article  Google Scholar 

  73. Park H, Kim J, Choi KO (2007) Neutron calibration facility with radioactive neutron sources at KRISS. Rad Prot Dosim 126(1–4):159

    Article  CAS  Google Scholar 

  74. Spratt JP, Aghara S, Fu B, Lichethan JD, Leadon R (2005) A conformal coating for shielding against naturally occurring thermal neutrons. IEEE Trans Nucl Sci 52(6):2340

    Article  CAS  Google Scholar 

  75. Asano Y, Sugita T, Suzuki T, Hirose H (2005) Comparison of thermal neutron distributions within shield materials. Rad Prot Dosim 116(1–4):284

    Article  CAS  Google Scholar 

  76. Sharon S (2007) X-rays, the electromagnetic spectrum. NASA retrieved on 12 Mar 2007

    Google Scholar 

  77. Grupen C, Cowan G, Eidelman SD, Stroh T (2005) Astroparticle physics. Heidelberg, Germany, p 109

    Google Scholar 

  78. Swinbourne R (2008) The X-ray tube and image intensifier for present day application. Aust Radiol 22(3):204

    Article  Google Scholar 

  79. Drenth J (1999) Principles of protein X-ray crystallography, 2nd edn. Springer, Heidelberg, Chap. 2

    Book  Google Scholar 

  80. Metcafe P, Butson M, Quach K, Bengua G, Hoban P (2002) 22nd annual conference. IEEE Eng Bio 4:2928

    Google Scholar 

  81. Butson MJ et al (2008) Measurement of radiotherapy superficial X-ray dose under eye shields with radiochromic films. Phys Med 24(1):29

    Article  PubMed  Google Scholar 

  82. Jain AK, Chen H (2004) Matching of dental X-ray images for human identification. Pattern Recognit 37:1519

    Article  Google Scholar 

  83. Pretty IA, Sweet D (2001) A look at forensic dentistry. Br Dent J 190(7):359

    PubMed  CAS  Google Scholar 

  84. Polok M (1995) Ion excited low energy Auger-electron emission from Ti and TiNi. J Phys Cond Matt 7:5275

    Article  Google Scholar 

  85. Mariani G, Bodel L, Adelstein SJ, Kassis AI (2000) Emerging roles for radiometabolic therapy of tumors based on Auger electron emission. J Nucl Med 41(9):1519

    PubMed  CAS  Google Scholar 

  86. Choursia AR, Chopra DK (1997) Auger spectroscopy. In: Settle F (ed) Handbook of instrument techniques for analytical chemistry. Prentice Hall, Englewood Cliffs, Chap. 2

    Google Scholar 

  87. Maeo S, Kramer M, Utaka T, Taniguchi K (2009) Development of microfocus spectrometer using multiple target anode monochromatic X-ray sources. J X-Ray Spectrom 38(4):333

    Article  CAS  Google Scholar 

  88. Michel T et al (2009) Reconstruction of X-ray spectra with the energy sensitive photon counting detector Medipix. Nuclr Instr Meth A 598(2):510

    Article  CAS  Google Scholar 

  89. Harding G (2005) Radiat Phys Chem 73(2):69

    Article  CAS  Google Scholar 

  90. Houston JD, Davis M, Davis M (2001) Fundamental of fluoroscopy. W.B. Saunders Co., Philadelphia, PA

    Google Scholar 

  91. Cusma JT, O’Hara MD (2001) In: Balter S (ed) Interventional fluoroscopy, technology and safety. Wiley, New York

    Google Scholar 

  92. Robson KJ (2001) A parametric method for determining mammographic X-ray tube output and half value layer. Br J Radiol 74:335

    PubMed  CAS  Google Scholar 

  93. Schriene-Karoussou A (2007) Review of image quality standards to control digital X-ray systems. Radiat Prot Dosim 177(1–3):23

    Google Scholar 

  94. Haring G, Thran A, David B (2003) Liquid metal anode X-ray tubes and their potential for high power operation. Radiat Phys Chem 67(1):7

    Article  CAS  Google Scholar 

  95. Mskinley RL, Torani MP, Samei E, Bradshaw ML (2005) Initial study of past quasi-monochromatic X-ray beam performance for X-ray computed mammography. IEEE Trans Nucl Sci 52(5):1243

    Article  Google Scholar 

  96. Seeram E (2001) Computed tomography: physical principles, clinical applications, and quality control. Saunders, Philadelphia

    Google Scholar 

  97. Ren B et al (2008) The effect of Tomo-synthesis X-ray Pulse width on Measured Beam Quality. Proceedings of 9th international workshop on digital mammographic breast density, vol 5116, Tucson

    Google Scholar 

  98. Graham DT, Cloke P (2001) Principles of radiological physics. Churchchill Livingstone, New York, p 281

    Google Scholar 

  99. Azzam EI, DeToledo SM, Pandey BN, Venkatachalam P (2007) Mechanism underlying the expression and propagation of low dose/low fluence ionizing radiation. Int J Low Rad 4(1):61

    Article  Google Scholar 

  100. Pelliccianoni M (2000) Overview of fluence to effective dose and fluence to ambient dose equivalent conversion coefficients for high energy radiation calculated using FLUKA code. Rad Prot Dosim 88:297

    Google Scholar 

  101. Chen J (2006) Estimated fluence to absorbed dose conversion coefficients for use in radiological protection of embryo and foetus against external exposure to photons from 50 keV to 10 GeV. Rad Prot Dosim 121(4):358

    Article  Google Scholar 

  102. Beck R, Latocha M, Dorman L, Pelliccioni M, Rollet S (2007) Measurements and simulations of radiation exposure to air craft workplaces due to cosmic radiation in the atmosphere. Rad Prot Dosim 126(1–4):564

    Article  CAS  Google Scholar 

  103. Sihver L, Mancusi D (2008) Improved dose and fluence calculations by using tabulated cross sections in PHITS. IEEE nuclear science symposium, Dresden, 19–25 Oct 2008

    Google Scholar 

  104. Bozkurt A, Xu XG (2004) Fluence to dose conversion coefficients for monoenergetic photon beams based on the VIP-man anatomical model. Rad Prot Dosim 112(2):219

    Article  CAS  Google Scholar 

  105. Midgley SM (2005) Measurements of X-ray linear attenuation coefficient for low atomic number, materials at energies 32–66 and 140 keV. Radiat Phys Chem 72(4):525

    Article  CAS  Google Scholar 

  106. Eisberg RM (1961) Fundamentals of modern physics. Wiley, New York

    Google Scholar 

  107. Aichinger H, Dierker J, Barfuk SJ, Sabel M (2004) Radiation exposure and image quality in X-ray diagnostic radiology. Springer, Berlin

    Book  Google Scholar 

  108. Siebert JA, Boone JM (2005) X-ray imaging physics for nuclear medicine. J Nucl Med Technol 33(1):3

    Google Scholar 

  109. Orito R et al (2003) A novel design of the MeV gamma ray imaging detector with microTPC. Nucl Instrum Meth A 513(1–2):408

    Article  CAS  Google Scholar 

  110. Washington CM, Leaver DT, Leaver D (2003) Principles and practice of radiation therapy. Elsevier, London

    Google Scholar 

  111. Bentel GC (1995) Radiation therapy planning, 2nd edn. McGraw Hill, New York

    Google Scholar 

  112. Khan FM (2004) Treatment, planning radiation oncology, 2nd edn. Lippincott Williams & Wilkins, New York

    Google Scholar 

  113. Bushong SC (2008) Radiologic science for technologists: physics, biology, and protection. Mosby, Inc., St. Louis

    Google Scholar 

  114. Graham DT, Cloke P (2003) Principles of radiological physics, 4th edn. Churchill Livingstone, Edinburgh

    Google Scholar 

  115. Sarkar S et al (2007) A Linogram/Sinogram cross-connection method for motion correction in planar SPECT imaging. IEEE Trans Nucl Sci 54(1):71–79

    Google Scholar 

  116. Beyer T et al (2000) J Nucl Med 41(8):1369

    PubMed  CAS  Google Scholar 

  117. Nassalski A et al (2007) IEEE Trans Nucl Sci 54(1):3

    Article  CAS  Google Scholar 

  118. Seeram E (2008) Computed tomography: physical principles, clinical applications and quality control. W.B. Saunders Co., Boston

    Google Scholar 

  119. Bushong SC (1993) X-ray interaction with matter, 5th edn. Mosby Year Book Inc., St. Louis

    Google Scholar 

  120. Hollins M (2001) Medical physics, 2nd edn. Nelson Thrones, New York

    Google Scholar 

  121. (2007) 11th mediterrian conference on medical and bioengineering, Ljubljana, Slovenia, 26–30 June 2007, Vol.16, Springer Pub. NY

    Google Scholar 

  122. Elgazzar AH, Silberstein EB (2004) Orthopedic nuclear medicine. Springer, New York

    Book  Google Scholar 

  123. Iniewski K (2009) Medical imaging principles, detectors and electronics. Wiley, Hoboken

    Google Scholar 

  124. Kim J, Sung S, Kim J (2006) A study on industrial gamma ray CT with a single source detector pair. Nucl Eng Technol 38(4):383

    CAS  Google Scholar 

  125. Ruddy FH, Dullo AR, Siedal JG, Petrovi B (2009) Separation of alpha emitting radioisotopes actinium 225 and bismuth 213 from thorium 229 using alpha recoil method. Nucl Instrum Meth A B213:351

    Google Scholar 

  126. IAEA (2009) Cyclotron produced radionuclides: principle and practice, vol 465, Tech-series. IAEA Publications, Vienna, Pergamon Press, London

    Google Scholar 

  127. Glatstein E (2007) Radiotherapy in practice. In: Hoskid PJ (ed) Radio therapy. Oxford University Press, Oxford

    Google Scholar 

  128. Santesmases MJ (2004) Peace propaganda and biomedical experimentation. J Hist Biol 39(4):765

    Article  Google Scholar 

  129. Subin YN (2001) Model calculations and evaluation of nuclear data for medical radioisotopes production. Radiochimica Acta 89(4–5):317

    Article  Google Scholar 

  130. Knap FF Jr (2003) New developments with unsealed sources for targeted therapy. Nuclear medicine program. 41st annual meeting, German Society of Nuclear Medicine Essen, Germany, 2–6 April 2003

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gupta, T.K. (2013). Nuclear Radiation, Ionization, and Radioactivity. In: Radiation, Ionization, and Detection in Nuclear Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34076-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34076-5_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34075-8

  • Online ISBN: 978-3-642-34076-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics