Skip to main content

Towards a Theory of Degenerated Solectrons in Doped Lattices: Problems and Perspectives

  • Chapter
  • First Online:
Without Bounds: A Scientific Canvas of Nonlinearity and Complex Dynamics

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

The theory of solectrons is restricted so far to one, or two charges embedded into a chain or a layer of atoms. We discuss here the open problems arising by adding excess charges into a chain or a layer when generalizing the existing theory of individual solectrons to many-body thermal systems. Several methods to include degeneration effects and interactions of the solectrons are discussed in order to extend the theory to finite densities and to discuss density—as well as temperature effects. In the present model the charges are embedded into one- or two-dimensional systems of atoms which are treated by classical embedded Langevin equations. By nonlinear interactions between atoms and charges moving quasi-particles as solectrons or solectron pairs are formed which are treated in stochastic tight-binding approximation based on Pauli-type kinetic equations. We discuss results for degenerated solectron systems with zero spin including spatial distributions, and energy distributions. We notice interesting structures of the energy distribution including the Fermi edge and the possible existence of gaps in the spectrum. Finally we discuss the perspectives of many-body systems and give an estimate of the phase plane temperature against density of doping charges—discussing possibilities to create degenerate solectron systems in heavily doped lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Landau, L.D.: Electron motion in crystal lattices. Phys. Z. Sowjetunion 3, 664 (1933)

    MATH  Google Scholar 

  2. Pekar, S.I.: Untersuchungen über die Elektronentheorie. Akademie Verlag, Berlin (1954)

    MATH  Google Scholar 

  3. Davydov, A.S.: Solitons in Molecular Systems, 2nd edn. Reidel, Dordrecht (1991)

    Book  Google Scholar 

  4. Brizhik, L.S., Davydov, A.S.: Soliton excitations in one-dimensional molecular systems. Physica Status Solidi B 115, 615–630 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  5. Davydov, A.S., Zolotaryuk, A.V.: Solitons in molecular systems with nonlinear nearest-neighbour interactions. Phys. Lett. 94, 49–51 (1983); Physica Status Solidi B 115, 115–125 (1983)

    Article  ADS  Google Scholar 

  6. Scott, A.C.: Davydov’s soliton. Phys. Rep. 217, 1–67 (1992)

    Article  Google Scholar 

  7. Zolotaryuk, A.V., Spatschek, K.H., Savin, A.V.: Supersonic mechanisms for charge and energy transfers in anharmonic molecular chains. Phys. Rev. B 54, 266–277 (1996)

    Article  ADS  Google Scholar 

  8. Makarov, V.A., Ebeling, W., Velarde, M.G.: Soliton-like waves on dissipative Toda lattices. Int. J. Bifurcat. Chaos 10, 1075–1089 (2000)

    MathSciNet  MATH  Google Scholar 

  9. Makarov, V.A., DelRio, E., Ebeling, W., Velarde, M.G.: Dissipative Toda-Rayleigh lattice and its oscillatory modes. Phys. Rev. E 64, 036601-1-14 (2001)

    Google Scholar 

  10. Del Rio, E., Makarov, V.A., Velarde, M.G., Ebeling, W.: Mode transitions and wave propagation in a driven-dissipative Toda-Rayleigh ring. Phys. Rev. E 67, 056208-1-9 (2003)

    Google Scholar 

  11. Velarde, M.G., Ebeling, W., Chetverikov, A.P.: On the possibility of electric conduction mediated by dissipative solitons. Int. J. Bifurcat. Chaos 15, 245–251 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chetverikov, A.P., Ebeling, W., Velarde, M.G.: Nonlinear ionic excitations, dynamic bound states, and nonlinear currents in a one-dimensional plasma. Contrib. Plasma Phys. 45, 275–283 (2005)

    Article  ADS  Google Scholar 

  13. Makarov, V.A., Velarde, M.G., Chetverikov, A.P., Ebeling, W.: Anharmonicity and its significance to non-Ohmic electric conduction. Phys. Rev. E 73, 066626-1-12 (2006)

    Google Scholar 

  14. Velarde, M.G., Ebeling, W., Hennig, D., Neissner, C.: On soliton-mediated fast electric conduction in a nonlinear lattice with Morse interactions. Int. J. Bifurcat. Chaos 16, 1035–1039 (2006)

    Article  MATH  Google Scholar 

  15. Chetverikov, A.P., Ebeling, W., Velarde, M.G.: Thermodynamics and phase transitions in dissipative and active Morse chains. Eur. Phys. J. B 44, 509–519 (2005)

    Article  ADS  Google Scholar 

  16. Chetverikov, A.P., Ebeling, W., Velarde, M.G.: Nonlinear excitations and electric transport in dissipative Morse-Toda lattices. Eur. Phys. J. B 51, 87–99 (2006)

    Article  ADS  Google Scholar 

  17. Chetverikov, A.P., Ebeling, W., Velarde, M.G.: Dissipative solitons and complex currents in active lattices. Int. J. Bifurcat. Chaos 16, 1613–1632 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hennig, D., Neissner, C., Velarde, M.G., Ebeling, W.: Effect of anharmonicity on charge transport in hydrogen-bonded systems. Phys. Rev. B 73, 024306-1-10 (2006)

    Google Scholar 

  19. Chetverikov, A.P., Ebeling, W., Velarde, M.G.: Thermal solitons and solectrons in nonlinear conducting chains. Int. J. Quant. Chem. 110, 46–61 (2010)

    Article  ADS  Google Scholar 

  20. Hennig, D., Chetverikov, A.P., Velarde, M.G., Ebeling, W.: Electron capture and transport mediated by lattice solitons. Phys. Rev. E 76, 046602-1-9 (2007)

    Google Scholar 

  21. Hennig, D., Velarde, M.G., Ebeling, W., Chetverikov, A.P.: Compounds of paired-electrons lattice solitons moving with supersonic velocity. Phys. Rev. E 78, 066606-1-9 (2008)

    Google Scholar 

  22. Velarde, M.G., Ebeling, W., Chetverikov, A.P., Hennig, D.: Electron trapping by solitons. Classical versus quantum mechanical approach. Int. J. Bifurcat. Chaos 18, 521–526 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ebeling, W., Velarde, M.G., Chetverikov, A.P., Hennig, D.: Anharmonicity and soliton-mediated transport. In: Russo, N., Antonchenko, V.Yu., Kryachko, E. (eds.) Selforganization of Molecular Systems, pp. 171–198. Springer, Berlin (2009)

    Chapter  Google Scholar 

  24. Cantu-Ros, O.G., Cruzeiro, L., Velarde, M.G., Ebeling, W.: On the possibility of electric transport mediated by long living intrinsic localized modes. Eur. Phys. J. B 80, 545–554 (2011)

    Article  ADS  Google Scholar 

  25. Velarde, M.G., Brizhik, L., Chetverikov, A.P., Cruzeiro, L., Ebeling, W., Röpke, G.: Electron pairing in one-dimensional anharmonic crystal lattices. Int. J. Quant. Chem. 112, 551–565 (2012)

    Article  Google Scholar 

  26. Velarde, M.G., Brizhik, L., Chetverikov, A.P., Cruzeiro, L., Ebeling, W., Röpke, G.: Quartic lattice interactions, soliton-like excitations, and electron pairing in one-dimensional anharmonic crystals. Int. J. Quant. Chem. 112, 2591–2598 (2012)

    Article  Google Scholar 

  27. Chetverikov, A.P., Ebeling, W., Röpke, G., Velarde, M.G.: Anharmonic excitations, time correlations and electric conductivity. Contrib. Plasma Phys. 47, 465–478 (2007)

    Article  ADS  Google Scholar 

  28. Chetverikov, A.P., Ebeling, W., Röpke, G., Velarde, M.G.: Hopping transfer and stochastic dynamics of electrons in two-dimensional plasmas. Contrib. Plasma Phys. 51, 814–829 (2011)

    Article  ADS  Google Scholar 

  29. Chetverikov, A.P., Ebeling, W., Velarde, M.G.: Local electron distributions and diffusion in anharmonic lattices mediated by thermally excited solitons. Eur. Phys. J. B 70, 217–227 (2009)

    Article  ADS  Google Scholar 

  30. Chetverikov, A.P., Ebeling, W., Velarde, M.G.: Soliton-like excitations and solectrons in two-dimensional nonlinear lattices. Eur. Phys. J. B 80, 137–145 (2011)

    Article  ADS  Google Scholar 

  31. Chetverikov, A., Ebeling, W., Velarde, M.G.: Controlling fast electron transfer at the nano-scale by solitonic excitations along crystallographic axes. Eur. Phys. J. B 85, 291–299 (2012)

    Article  ADS  Google Scholar 

  32. Pauli, W.: Festschrift zum 60. Geburtstage A. Sommerfelds. Hirzel, Leipzig (1928)

    Google Scholar 

  33. Binder, K. (ed.): Monte Carlo Methods in Statistical Physics. Springer, Berlin (1979)

    Google Scholar 

  34. Brizhik, L., Chetverikov, A.P., Ebeling, W., Röpke, G., Velarde, M.G.: Electron pairing and Coulomb repulsion in one-dimensional anharmonic lattices. Phys. Rev. B 85, 245105 (2012)

    Article  ADS  Google Scholar 

  35. Muto, V., Scott, A.C., Christansen, P.L.: Thermally generated solitons in a Toda lattice model of DNA. Phys. Lett. 136, 33–36 (1989)

    Article  Google Scholar 

  36. Marchesoni, F., Lucheroni, C.: Soliton density in an infinite Toda lattice. Phys. Rev. B 44, 5303–5305 (1991)

    Article  ADS  Google Scholar 

  37. Alexandrov, A.S.: High-Temperature superconductivity: the explanation. Phys. Scripta 83, 038301 (2011)

    Article  ADS  Google Scholar 

  38. Kalosakas, G., Rasmussen, K.O., Bishop, A.R.: Charge trapping in DNA due to intrinsic vibrational hot spots. J. Chem. Phys. 118, 3731–3736 (2003)

    Article  ADS  Google Scholar 

  39. Kalosakas, G., Rasmussen, K.O., Bishop, A.R.: Nonlinear excitations in DNA: polarons and bubbles. Synth. Met. 141, 93–97 (2004)

    Article  Google Scholar 

  40. Tolman, R.: The Principles of Statistical Mechanics. Oxford University Press, Oxford (1938) [Sects. 100, 102, 105]

    Google Scholar 

  41. Van Hove, L.: Quantum-mechanical perturbations giving rise to a statistical transport equation. Physica 21, 517–540 (1954)

    Article  ADS  Google Scholar 

  42. Van Hove, L.: The approach to equilibrium in quantum statistics: a perturbation treatment to general order. Physica 23, 441–480 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. Van Hove, L.: The ergodic behaviour of quantum many-body systems. Physica 25, 268–276 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. Böttger, H., Bryksin, V.V.: Hopping Conduction in Solids. Akademie, Berlin (1985)

    Google Scholar 

  45. Schlag, E.W., Yang, D.-Y., Shen, S.-Y., Selzle, H.L., Lin, S.H., Rentzepis, P.M.: Dynamical principles in biological processes: a model of charge migration in proteins and DNA. Proc. Natl. Acad. Sci. USA 97, 9849–9854 (2000)

    Article  ADS  Google Scholar 

  46. Velarde, M.G., Chetverikov, A.P., Ebeling, W., Hennig, D., Kozak, J.J.: On the mathematical modeling of soliton-mediated long-range electron transfer. Int. J. Bifurcat. Chaos 20, 185–194 (2010)

    Article  Google Scholar 

  47. Velarde, M.G.: From polaron to solectron: the addition of nonlinear elasticity to quantum mechanics and its possible effect upon electric transport. J. Comput. Appl. Math. 233, 1432–1445 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  48. Newns, D.M., Tsuei, C.C.: Fluctuating Cu-O-Cu bond model of high-temperature superconductivity. Nat. Phys. 3, 184–191 (2007)

    Article  Google Scholar 

  49. Marouchkine, A.: Room Temperature Superconductivity. Cambridge University Press, Cambridge (2004)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge fruitful discussions with A.S. Alexandrov, E. Brändas, L. Brizhik, L. Cisneros-Ake, L. Cruzeiro, F. de Moura, C. Eilbeck, J. Feder, D. Hennig, J.J. Kozak, S. Larsson, R. Lima, D.M. Newns, G. Röpke, F.M. Russell, G.A. Vinogradov and E.G. Wilson. This research was supported by the Spanish Ministerio de Economía y Competitividad, under Grant MAT2011-26221.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Chetverikov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chetverikov, A.P., Ebeling, W., Velarde, M.G. (2013). Towards a Theory of Degenerated Solectrons in Doped Lattices: Problems and Perspectives. In: Rubio, R., et al. Without Bounds: A Scientific Canvas of Nonlinearity and Complex Dynamics. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34070-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34070-3_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34069-7

  • Online ISBN: 978-3-642-34070-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics