Skip to main content

The Kinamycins

  • Chapter
  • First Online:

Abstract

Chemists are continuously confronted with the challenge of classifying and accurately assessing the complexity elements presented by natural products, and these elements are often assigned familiar categories such as topological, stereochemical, and size complexities. An interesting additional element of complexity involves the fusion of well-known functional groups into larger entities, with the individual constituents in communication by a combination of resonance and inductive effects. α,β-Unsaturated carbonyls (carbonyl + alkene) and enamines (amine + alkene) may be the simplest examples of such functionality.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. (a) Ito S, Matsuya T, Ōmura S, Otani M, Nakagawa A (1970) J Antibiot 23:315–317; (b) Ōmura S, Nakagawa A, Yamada H, Hata T, Furusaki A (1973) Chem Pharm Bull 21:931–940

    Google Scholar 

  2. Hata T, Ōmura S, Iwai Y, Nakagawa A, Otani M (1971) J Antibiot 24:353–359

    Article  CAS  Google Scholar 

  3. Ōmura S, Nakagawa A, Yamada H, Hata T, Furusaki A, Watanabe T (1971) Chem Pharm Bull 19:2428–2430

    Article  Google Scholar 

  4. (a) Cone MC, Seaton PJ, Halley KA, Gould SJ (1989) J Antibiot 42:179–188; (b) Isshiki K et al (1989) J Antibiot 42:467–469; (c) Smitka TA, Bonjouklian R, Perun TJ, Hunt AH, Foster RS, Mynderse JS, Yao RC (1992) J Antibiot 45:581–583; (d) Lin H-C, Chang S-C, Wang N-L, Chang L-R (1994) J Antibiot 47:675–680; (e) Lin H-C, Chang S-C, Wang N-L, Chang L-R (1994) J Antibiot 47:681–687

    Google Scholar 

  5. For reviews, see: (a) Gould SJ (1997) Chem Rev 97:2499–2510; (b) Marco-Contelles J, Molina MT (2003) Curr Org Chem 7:1433–1442; (c) Arya DP (2006) Top Heterocycl Chem 2:129–152; (d) Nawrat CC, Moody CJ (2011) Nat Prod Rep 28:1426–1444

    Google Scholar 

  6. Seaton PJ, Gould SJ (1989) J Antibiot 42:189–197

    Article  CAS  Google Scholar 

  7. He H, Ding WD, Bernan VS, Richardson AD, Ireland CM, Greenstein M, Ellestad GA, Carter GT (2001) J Am Chem Soc 123:5362–5363

    Article  CAS  Google Scholar 

  8. Furusaki A, Matsui M, Watanabe T, Ōmura S, Nakagawa A, Hata T (1972) Isr J Chem 10:173–187

    CAS  Google Scholar 

  9. Seaton PJ, Gould SJ (1988) J Am Chem Soc 110:5912–5914

    Article  CAS  Google Scholar 

  10. Dmitrienko GI, Nielsen KE, Steingart C, Ngai SM, Willson JM, Weeratunga G (1990) Tetrahedron Lett 31:3681–3684

    Article  CAS  Google Scholar 

  11. Echavarren AM, Tamayo N, Paredes MC (1993) Tetrahedron Lett 34:4713–4716

    Article  CAS  Google Scholar 

  12. Gould SJ, Tamayo N, Melville CR, Cone MC (1994) J Am Chem Soc 116:2207–2208

    Article  CAS  Google Scholar 

  13. Mithani S, Weeratunga G, Taylor NJ, Dmitrienko GI (1994) J Am Chem Soc 116:2209–2210

    Article  CAS  Google Scholar 

  14. Arya DP, Jebaratnam DJ (1995) J Org Chem 60:3268–3269

    Article  CAS  Google Scholar 

  15. Laufer RS, Dmitrienko GI (2002) J Am Chem Soc 124:1854–1855

    Article  CAS  Google Scholar 

  16. Feldman KS, Eastman KJ (2006) J Am Chem Soc 128:12562–12573

    Article  CAS  Google Scholar 

  17. Khdour O, Skibo EB (2009) Org Biomol Chem 7:2140–2154

    Article  CAS  Google Scholar 

  18. (a) Ballard TE, Melander C (2008) Tetrahedron Lett 49:3157–3161; (b) Heinecke CL, Melander C (2010) Tetrahedron Lett 51:1455–1458

    Google Scholar 

  19. Zeng W, Ballard TE, Tkachenko AG, Burns VA, Feldheim DL, Melander C (2006) Bioorg Med Chem Lett 16:5148–5151

    Article  CAS  Google Scholar 

  20. O'Hara KA et al (2007) Free Radic Biol Med 43:1132–1144

    Article  Google Scholar 

  21. Gould SJ, Melville CR, Cone MC, Chen J, Carney JR (1997) J Org Chem 62:320–324

    Article  CAS  Google Scholar 

  22. Chen N, Carriere MB, Laufer RS, Taylor NJ, Dmitrienko GI (2008) Org Lett 10:381–384

    Article  CAS  Google Scholar 

  23. (a) Nicolaou KC, Denton RM, Lenzen A, Edmonds DJ, Li A, Milburn RR, Harrison ST (2006) Angew Chem Int Ed Engl 45:2076–2081; (b) Krygowski ES, Murphy-Benenato K, Shair MD (2008) Angew Chem Int Ed Engl 47:1680–1684; (c) Morris WJ, Shair MD (2008) Org Lett 11:9–12; (d) Zhang W, Baranczak A, Sulikowski GA (2008) Org Lett 10:1939–1941; (e) Gholap SL, Woo CM, Ravikumar PC, Herzon SB (2009) Org Lett 11:4322–4325; (f) Nicolaou KC, Nold AL, Li H (2009) Angew Chem Int Ed Engl 48:5860; (g) Lee HG, Ahn JY, Lee AS, Shair MD (2010) Chem Eur J 16:13058–13062; (h) Morris WJ, Shair MD (2010) Tetrahedron Lett 51:4310–4312; (i) Herzon SB, Lu L, Woo CM, Gholap SL (2011) J Am Chem Soc 133:7260–7263

    Google Scholar 

  24. Lei X, Porco JA (2006) J Am Chem Soc 128:14790–14791

    Article  CAS  Google Scholar 

  25. Hu Y, Li C, Kulkarni BA, Strobel G, Lobkovsky E, Torczynski RM, Porco JA (2001) Org Lett 3:1649–1652

    Article  CAS  Google Scholar 

  26. Aggarwal VK, Mereu A, Tarver GJ, McCague R (1998) J Org Chem 63:7183–7189

    Article  CAS  Google Scholar 

  27. (a) Elston CL, Jackson RFW, MacDonald SJF, Murray PJ (1997) Angew Chem Int Ed Engl 36:410–412; (b) Li C, Pace EA, Liang M-C, Lobkovsky E, Gilmore TD, Porco JA (2001) J Am Chem Soc 123:11308–11309; (c) Li C, Johnson RP, Porco JA (2003) J Am Chem Soc 125:5095–5106

    Google Scholar 

  28. Jung ME, Hagenah JA (1983) J Org Chem 48:5359–5361

    Article  CAS  Google Scholar 

  29. Azizian H, Eaborn C, Pidcock A (1981) J Organomet Chem 215:49–58

    Article  CAS  Google Scholar 

  30. Caron M, Sharpless KB (1985) J Org Chem 50:1557–1560

    Article  CAS  Google Scholar 

  31. (a) Furrow ME, Myers AG (2004) J Am Chem Soc 126:5436–5445; (b) Furrow ME, Myers AG (2004) J Am Chem Soc 126:12222–12223

    Google Scholar 

  32. Kumamoto T, Kitani Y, Tsuchiya H, Yamaguchi K, Seki H, Ishikawa T (2007) Tetrahedron 63:5189–5199

    Article  CAS  Google Scholar 

  33. Kitani Y, Morita A, Kumamoto T, Ishikawa T (2002) Helv Chim Acta 85:1186–1195

    Article  CAS  Google Scholar 

  34. Heinzman SW, Grunwell JR (1980) Tetrahedron Lett 21:4305–4308

    Article  CAS  Google Scholar 

  35. Nicolaou KC, Montagnon T, Baran PS (2002) Angew Chem Int Ed Engl 41:993–996

    Article  CAS  Google Scholar 

  36. Donohoe TJ, Blades K, Moore PR, Waring MJ, Winter JJG, Helliwell M, Newcombe NJ, Stemp G (2002) J Org Chem 67:7946–7956

    Article  CAS  Google Scholar 

  37. Evans DA, Chapman KT, Carreira EM (1988) J Am Chem Soc 110:3560–3578

    Article  CAS  Google Scholar 

  38. Jacob P, Callery PS, Shulgin AT, Castagnoli N (1976) J Org Chem 41:3627–3629

    Article  CAS  Google Scholar 

  39. Nicolaou KC, Li H, Nold AL, Pappo D, Lenzen A (2007) J Am Chem Soc 129:10356–10357

    Article  CAS  Google Scholar 

  40. Giuffredi G, Bobbio C, Gouverneur V (2006) J Org Chem 71:5361–5364

    Article  CAS  Google Scholar 

  41. Johnson CR, Adams JP, Braun MP, Senanayake CBW (1992) Tetrahedron Lett 33:917–918

    Article  CAS  Google Scholar 

  42. Banwell MG, Kelly BD, Kokas OJ, Lupton DW (2003) Org Lett 5:2497–2500

    Article  CAS  Google Scholar 

  43. (a) Kerr MS, Read de Alaniz J, Rovis T (2002) J Am Chem Soc 124:10298–10299; (b) Kerr M, Read de Alaniz J, Rovis T (2005) J Org Chem 70:5725–5728

    Google Scholar 

  44. (a) Molander GA, Hahn G (1986) J Org Chem 51:1135–1138; (b) Molander GA (1992) Chem Rev 92:29–68

    Google Scholar 

  45. Woo CM, Lu L, Gholap SL, Smith DR, Herzon SB (2010) J Am Chem Soc 132:2540–2541

    Article  CAS  Google Scholar 

  46. Huot R, Brassard P (1974) Can J Chem 52:838–842

    Article  CAS  Google Scholar 

  47. (a) Middleton WJ (1976) Tris(substituted amino)sulfonium Salts. US Patent 3,940,402; (b) Fujita M, Hiyama T (1993) erythro-Directed reduction of a β-keto amide: erythro-1- (3-hydroxy-2-methyl-3-phenypropanoyl)piperidine. In: Organic syntheses, vol 8. Wiley, New York, p 326

    Google Scholar 

  48. Bellina F, Rossi R (2009) Chem Rev 110:1082–1146

    Article  Google Scholar 

  49. Williams DR, Reeves JT, Nag PP, Pitcock WH Jr, Baik M-H (2006) J Am Chem Soc 128:12339–12348

    Article  CAS  Google Scholar 

  50. Charette AB, Wurz RP, Ollevier T (2000) J Org Chem 65:9252–9254

    Article  CAS  Google Scholar 

  51. Doering WvE, DePuy CH (1953) J Am Chem Soc 75:5955–5957

    Google Scholar 

  52. Kolb HC, VanNieuwenhze MS, Sharpless KB (1994) Chem Rev 94:2483–2547

    Article  CAS  Google Scholar 

  53. Cox AL, Johnston JN (2001) Use of the Vicinal Element Effect for Regiochemical Control of Quinone Substitutions and Its Implication for Convergent Mitomycin Construction. Org Lett 3:3695

    Google Scholar 

  54. Williams AL, Srinivasan JM, Johnston JN (2006) Synthesis of an Advanced Intermediate en Route to the Mitomycin Natural Products. Org Lett 8:6047

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Herzon, S.B. (2012). The Kinamycins. In: Li, J., Corey, E. (eds) Total Synthesis of Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34065-9_3

Download citation

Publish with us

Policies and ethics