Skip to main content

Total Synthesis of the Lycopodium Alkaloid Complanadine A

  • Chapter
  • First Online:
Total Synthesis of Natural Products

Abstract

Mankind’s fascination with symmetry can be traced back to early civilizations in art, sculpture, architecture, music, and many other forms. Certainly, the bilateral symmetry of the human form and other life forms supports the idea that symmetry confers significant evolutionary advantages. It is therefore not surprising that in the world of complex molecules, many examples of symmetrical molecules can be found, which undoubtedly also provide an evolutionary advantage to the producing organism. Yet, as one more critically analyzes the structures of natural products that possess some element of symmetry, it becomes apparent that pseudosymmetry may, in fact, be more common and a key to an as of yet underappreciated subtlety of evolution. It was in the wake of these musings that we first started to ponder the pseudosymmetric, complex Lycopodium alkaloid complanadine A (1, Fig. 11.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. For a recent review, see: Hirasawa Y, Kobayashi J, Morita H (2009) Heterocycles 77:679–729

    Google Scholar 

  2. (a) Gupta RN, Castillo M, MacLean DB, Spenser ID (1970) Can J Chem 48:2911–2918; (b) Castillo M, Gupta RN, MacLean DB, Spenser ID (1970) Can J Chem 48:1893–1903; (c) Gupta RN, Castillo M, MacLean DB, Spenser ID, Wrobel JT (1968) J Am Chem Soc 90:1360–1361

    Google Scholar 

  3. Ma XQ, Gang DR (2008) Phytochemistry 69:2022–2028

    Article  CAS  Google Scholar 

  4. Hemscheidt T, Spenser ID (1996) J Am Chem Soc 118:1799–1800

    Article  CAS  Google Scholar 

  5. Hemscheidt T (2000) Top Curr Chem 209:175–206

    Article  CAS  Google Scholar 

  6. Leete E, Slattery SA (1976) J Am Chem Soc 98:6326–6330

    Article  CAS  Google Scholar 

  7. Späth E, Zajic E (1936) Chem Ber 69:2448–2452

    Google Scholar 

  8. Kuffner F, Kaiser E (1954) Monatsh Chem 85:896–905

    Article  CAS  Google Scholar 

  9. Morita H, Ishiuchi K, Haganuma A, Hoshino T, Obara Y, Nakahata N, Kobayashi J (2005) Tetrahedron 61:1955–1960

    Article  CAS  Google Scholar 

  10. Schumann D’, Naumann A (1983) Liebigs Ann Chem 220–225

    Google Scholar 

  11. Kobayashi J, Hirasawa Y, Yoshida N, Morita H (2000) Tetrahedron Lett 41:9069–9073

    Article  CAS  Google Scholar 

  12. Ishiuchi K, Kubota T, Mikami Y, Obara Y, Nakahata N, Kobayashi J (2007) Bioorg Med Chem 15:413–417

    Article  CAS  Google Scholar 

  13. Ishiuchi K, Kubota T, Ishiyama H, Hayashi S, Shibata T, Mori K, Obara Y, Nakahata N, Kobayashi J (2011) Bioorg Med Chem 19:749–753

    Article  CAS  Google Scholar 

  14. Liang YQ, Tang XC (2004) Neurosci Lett 361:56–59

    Article  CAS  Google Scholar 

  15. Jiang HL, Luo XM, Bai DL (2003) Curr Med Chem 10:2231–2252

    Article  CAS  Google Scholar 

  16. For a review, see: Shigeta M, Homma A (2001) CNS Drug Rev 7:353–368

    Google Scholar 

  17. Ma X, Gang DR (2004) Nat Prod Rep 21:752–772

    Article  CAS  Google Scholar 

  18. Braak H, Braak E (1991) Acta Neuropathol 82:239–259

    Article  CAS  Google Scholar 

  19. (a) Fiore M, Chaldakov GN, Aloe L (2009) Rev Neurosci 20:133–145; (b) Levi-Montalcini R (1987) Science 237:1154–1162

    Google Scholar 

  20. Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M, Brooks DJ, Svendsen CN, Heywood P (2003) Nat Med 9:589–595

    Article  CAS  Google Scholar 

  21. For pertinent reviews, see: (a) Varela JA, Saá C (2003) Chem Rev 103:3787–3801; (b) Louie J, Chopade PR (2006) Adv Synth Catal 348:2307–2327

    Google Scholar 

  22. Yuan C, Chang C-T, Axelrod A, Siegel D (2010) J Am Chem Soc 132:5924–5925

    Article  CAS  Google Scholar 

  23. Tomioka K, Koga K (1984) Tetrahedron Lett 25:1599–1600

    Article  CAS  Google Scholar 

  24. Imada Y, Yuasa M, Nakamura I, Murahashi S-I (1994) J Org Chem 59:2282–2284

    Article  CAS  Google Scholar 

  25. Manske RHF, Marion L (1944) Can J Res 22:53–55

    Article  Google Scholar 

  26. (a) Weitz E, Scheffer A (1921) Ber Dtsch Chem Ges 54:2327–2344; (b) For a recent review, see: Corma A, Iborra S, Mifsud M, Renz M (2005) ARKIVOC 9:124–132

    Google Scholar 

  27. (a) Caine D, Procter K, Cassell RA (1984) J Org Chem 49:2647–2648; (b) Or neat in the presence of CaCO3: Mutti S, Daubié C, Decalogne F, Fournier R, Rossi P (1996) Tetrahedron Lett 37:3125–3128

    Google Scholar 

  28. Kozak JA, Dake GR (2008) Angew Chem Int Ed 47:4221–4223

    Article  CAS  Google Scholar 

  29. Tsumoda T, Suzuki R, Noyori R (1980) Tetrahedron Lett 21:1357–1358

    Article  Google Scholar 

  30. Näslund G, Senning A, Lawesson S-O (1962) Acta Chem Scand 16:1324–1328

    Article  Google Scholar 

  31. Wu B, Bai D (1997) J Org Chem 62:5978–5981

    Article  CAS  Google Scholar 

  32. Ishiyama T, Takagi J, Ishida K, Miyaura N, Anastasi NR, Hartwig F (2002) J Am Chem Soc 124:390–391

    Article  CAS  Google Scholar 

  33. Cho J-Y, Tse MK, Holmes D, Maleczka RE Jr, Smith MR (2002) Science 295:305–308

    Article  CAS  Google Scholar 

  34. Mkhalid IA, Barnard JH, Marder TB, Murphy JM, Hartwig JF (2010) Chem Rev 110:890–931

    Article  CAS  Google Scholar 

  35. Hartwig JF (2012) Acc Chem Res 45:864–873

    Article  CAS  Google Scholar 

  36. Liao X, Stanley LM, Hartwig JF (2011) J Am Chem Soc 133:2088–2091

    Article  CAS  Google Scholar 

  37. Beck EM, Hatley R, Gaunt MJ (2008) Angew Chem Int Ed 47:3004–3007

    Article  CAS  Google Scholar 

  38. Tse MK, Cho JY, Smith MR III (2001) Org Lett 3:2831–2833

    Article  CAS  Google Scholar 

  39. (a) Paul S, Chotana GA, Holmes D, Reichle RC, Maleczka RE Jr, Smith MR III (2006) J Am Chem Soc 128:15552–15553; (b) Kallepalli VA, Shi F, Paul S, Onyozili EN, Maleczka RE Jr, Smith MR III (2009) J Org Chem 74:9199–9201

    Google Scholar 

  40. (a) Takagi J, Sato K, Hartwig JF, Ishiyama T, Miyaura N (2002) Tetrahedron Lett 43:5649–5651; (b) Ishiyama T, Takagi J, Nobuta Y, Miyaura N (2005) Org Synth 82:126–131

    Google Scholar 

  41. Kolundzic P, Noshi MN, Tjandra M, Movassaghi M, Miller SJ (2011) J Am Chem Soc 133:9104–9111

    Article  CAS  Google Scholar 

  42. For the isolation of lycopladines F and G, see: Ishiuchi K, Kubota T, Hayashi S, Shibata T, Kobayashi J (2009) Tetrahedron Lett 50:4221–4224

    Google Scholar 

  43. (a) Schneider WP, McIntosh AV (Upjohn) (1956) US Patent 2,769,824, 1956; (b) VanRheenen V, Kelly RC, Cha DY (1976) Tetrahedron Lett 17:1973–1976

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sarpong, R., Fischer, D.F. (2012). Total Synthesis of the Lycopodium Alkaloid Complanadine A. In: Li, J., Corey, E. (eds) Total Synthesis of Natural Products. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34065-9_11

Download citation

Publish with us

Policies and ethics