Skip to main content

Composite Expansions and Singularly Perturbed Differential Equations

  • Chapter
  • First Online:
Composite Asymptotic Expansions

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2066))

Abstract

We assume Φ analytic with respect to x and y in a domain \(\mathcal{D}\subset {\mathbb{C}}^{2}\) and of Gevrey order 1 with respect to \(\epsilon \) in S; this also allows to treat equations containing a control parameter. This is useful for equations where canards solutions might occur for certain values of the parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Consider the landscape R d given by (5.18) with \(d = p\arg \eta =\arg \epsilon \). We call mountain a connected component of the set R d  > 0. A valley is a connected component of the set R d  < 0. See the lines above Corollary 5.16 for a description and a numbering of these mountains and valleys.

  2. 2.

    Other arguments for η can be reduced to this case by rotations \(x = \xi {e}^{i\varphi }\). If we want a sector of greater opening in η, we cover it by small sectors in η and consider the intersection of the corresponding sectors in x. One can consider an initial condition at a point x = Lη, \(L \in \mathbb{C}\) instead of x = 0, in which case we first study the existence and the asymptotics of the corresponding solution at x = 0 using the inner equation.

  3. 3.

    i.e. the set whose image by F is the triangle with vertices \({x}_{0}^{p},{r}_{1}^{p}\,{e}^{2\delta i}\) and \({r}_{1}^{p}\,{e}^{-2\delta i}\).

  4. 4.

    Instead of integration from 0 to x, however, we must use integration from some point ζη to x.

  5. 5.

    More precisely, consider \(z =\dot{ x} \circ {x}^{-1}\) with the inverse function x  − 1 of x = x(t). For convenience, the independent variable is named x now. We hope the fact that x is a function in the original equation, but the independent variable of the new equation is not too confusing for the reader.

References

  1. Ackerberg, R.C., O’Malley, R.E.: Boundary layer problems exhibiting resonance. Stud. Appl. Math. 49, 277–295 (1970)

    MathSciNet  MATH  Google Scholar 

  2. Balser, W.: Formal Power Series and Linear Systems of Meromorphic Ordinary Differential Equations. Springer, New York (2000)

    MATH  Google Scholar 

  3. Benoît, É., Callot, J.-L., Diener, F., Diener, M.: Chasse au canard. Collect. Math. 31, 37–119 (1981)

    Google Scholar 

  4. Benoît, É., El Hamidi, A., Fruchard, A.: On combined asymptotic expansions in singular perturbations. Electron. J. Diff. Equat. 51, 1–27 (2002)

    Google Scholar 

  5. Benoît, É., Fruchard, A., Schäfke, R., Wallet, G.: Solutions surstables des équations différentielles complexes lentes-rapides à point tournant. Ann. Fac. Sci. Toulouse Math. VII 4, 627–658 (1998)

    Article  Google Scholar 

  6. Benoît, É., Fruchard, A., Schäfke, R., Wallet, G.: Overstability: Toward a global study. C. R. Acad. Sci. Paris I 326, 873–878 (1998)

    Article  MATH  Google Scholar 

  7. Bonckaert, P., De Maesschalck, P., Gevrey normal forms of vector fields with one zero eigenvalue. J. Math. Anal. Appl. 344, 301–321 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Canalis-Durand, M., Mozo-Fernandez, J., Schäfke, R.: Monomial summability and doubly singular differential equations. J. Differ. Equat. 233, 485–511 (2007)

    Article  MATH  Google Scholar 

  9. Canalis-Durand, M., Ramis, J.-P., Schäfke, R., Sibuya, Y.: Gevrey solutions of singularly perturbed differential equations. J. Reine Angew. Math. 518, 95–129 (2000)

    MathSciNet  MATH  Google Scholar 

  10. De Maesschalck, P.: On maximum bifurcation delay in real planar singularly perturbed vector fields. Nonlinear Anal. 68, 547–576 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. De Maesschalck, P.: Ackerberg-O’Malley resonance in boundary value problems with a turning point of any order. Commun. Pure Appl. Anal. 6, 311–333 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. De Maesschalck, P.: Gevrey properties of real planar singularly perturbed systems. J. Differ. Equat. 238, 338–365 (2007)

    Article  MATH  Google Scholar 

  13. De Maesschalck, P., Dumortier, F.: Canard solutions at non-generic turning points. Trans. Am. Math. Soc. 358, 2291–2334 (2006)

    Article  MATH  Google Scholar 

  14. Diener, M.: Regularizing microscopes and rivers. SIAM J. Math. Anal. 25, 148–173 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dorodnitsyn, A.A.: Asymptotic solution of the Van der Pol equation. Priklad. Mat. Mekh. 11, 313–328 (1947) (in russian)

    Google Scholar 

  16. Dumortier, F., Roussarie, R.: Canard cycles and center manifolds. Memoir. Am. Math. Soc. 577, 1996

    Google Scholar 

  17. Eckhaus, W.: Asymptotic analysis of singular perturbations. Studies in Mathematics and its Applications, vol. 9. North-Holland, Amsterdam (1979)

    Google Scholar 

  18. Erdélyi, A.: Singular perturbations of boundary value problems involving ordinary differential equations. J. Soc. Indust. Appl. Math. 11, 105–116 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equat. 31, 53–98 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  20. Forget, T.: Points tournants dégénérés, Thèse de Doctorat, Université de La Rochelle, 2007

    Google Scholar 

  21. Forget, T.: Solutions canards en des points tournants dégénérés. Ann. Fac. Sci. Toulouse Math. 16, 799–816 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Forget, T.: Asymptotic study of planar canard solutions. Bull. Belg. Math. Soc. Simon Stevin 15, 809–824 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Fraenkel, L.E.: On the method of matched asymptotic expansions. Proc. Cambridge Philos. Soc. 65, 209–284 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fruchard, A., Schäfke, R.: Exceptional complex solutions of the forced Van der Pol equation. Funkcialaj Ekvacioj 42, 201–223 (1999)

    MathSciNet  MATH  Google Scholar 

  25. Fruchard, A., Schäfke, R.: Overstability and resonance. Ann. Inst. Fourier Grenoble 53, 227–264 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fruchard, A., Schäfke, R.: A survey of some results on overstability and bifurcation delay. Discrete Cont. Dyn. Syst. S 2, 931–965 (2009)

    Article  MATH  Google Scholar 

  27. Fruchard, A., Schäfke, R.: De nouveaux développements asymptotiques combinés pour la perturbation singulière. Actes du Colloque à la mémoire d’Emmanuel Isambert Publications Univ. Paris 13, 125–161 (2012)

    Google Scholar 

  28. Fruchard, A., Schäfke, R.: Composite asymptotic expansions and turning points of singularly perturbed ordinary differential equations. C. R. Math. Acad. Sci. 348, 1273–1277 (2010)

    Article  MATH  Google Scholar 

  29. Gautheron, V., Isambert, E.: Finitely differentiable ducks and finite expansions. In: Benoît, E. (ed.) Dynamic Bifurcations, Lect. Notes Math., vol. 1493, pp. 40–56. Springer, New York (1991)

    Chapter  Google Scholar 

  30. Van Gils, S., Krupa, M., Szmolyan, P.: Asymptotic expansions using blow-up Z. Angew. Math. Phys. 56, 369–397 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hek, G.: Geometric singular perturbation theory in biological practice. J. Math. Biol. 60, 347–386 (2010)

    Article  MathSciNet  Google Scholar 

  32. Isambert, E.: Nonsmooth ducks and regular perturbations of rivers, I and II. J. Math. Anal. Appl. 200, 14–33 and 289–306 (1996)

    Google Scholar 

  33. Jones, C.K.R.T.: Geometric singular perturbation theory. In: Dynamical Systems, Lect. Notes Math., vol. 1609. Springer, New York (1995)

    Google Scholar 

  34. Kaplun, S., Lagerstrom, P.A.: Asymptotic expansions of Navier-Stokes solutions for small Reynolds numbers. J. Math. Mech. 6, 585–593 (1957)

    MathSciNet  MATH  Google Scholar 

  35. Kevorkian, J., Cole, J.D.: Perturbation methods in applied mathematics. Applied Mathematical Sciences, vol. 34. Springer, New York (1981)

    Google Scholar 

  36. Kopell, N.: A geometric approach to boundary layer problems exhibiting resonance. SIAM J. Appl. Math. 37, 436–458 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kopell, N.: The singularly perturbed turning-point problem: a geometric approach. In: Singular perturbations and asymptotics, Proc. Adv. Sem., Math. Res. Center, University of Wisconsin, Madison, Wisconsin (1980) 173–190

    Google Scholar 

  38. Krupa, M., Szmolyan, P.: Relaxation oscillation and canard explosion. J. Differ. Equat. 174, 312–368 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic points-fold and canard points in two dimensions. SIAM J. Math. Anal., 33, 286–314 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lagerstrom, P.A.: Matched asymptotic expansions: ideas and techniques. Applied Mathematical Sciences, vol. 76. Springer, New York (1988)

    Google Scholar 

  41. Lobry, C.: Dynamic bifurcations. In: Benoît, E. (ed.) Dynamic Bifurcations, Lect. Notes Math., vol. 1493, pp. 1–13. Springer, New York (1991)

    Chapter  Google Scholar 

  42. Matzinger, É.: Étude d’équations différentielles ordinaires singulièrement perturbées au voisinage d’un point tournant. Thesis, Preprint IRMA 2000/53, Strasbourg (2000)

    Google Scholar 

  43. Matzinger, É.: Étude des solutions surstables de l’équation de Van der Pol. Ann. Fac. Sci. Toulouse 10, 713–744 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. Matzinger, É.: Asymptotic behaviour of solutions near a turning point: the example of the brusselator equation. J. Differ. Equat. 220, 478–510 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Mischenko, E.F., Rozov, N.Ch.: Differential Equations with Small Parameters and Relaxation Oscillations. Plenum Press, New York and London (1980)

    Book  Google Scholar 

  46. O’Malley, R.E.: Singular perturbation methods for ordinary differential equations. Applied Mathematical Sciences, vol. 89. Springer, New York (1991)

    Google Scholar 

  47. Panazzolo, D.: On the existence of canard solutions. Publ. Mat. 44, 503–592 (2000)

    MathSciNet  MATH  Google Scholar 

  48. Ramis, J.-P.: Dévissage Gevrey. Astérisque 59–60, 173–204 (1978)

    MathSciNet  Google Scholar 

  49. Ramis, J.-P.: Les séries k-sommables et leurs applications. In: Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory, Lect. Notes Physics, vol. 126, pp. 178–199. Springer, New York (1980)

    Google Scholar 

  50. Sibuya, Y.: Gevrey property of formal solutions in a parameter. In: Asymptotic and computational analysis (Winnipeg, MB, 1989). Lecture Notes in Pure and Appl. Math., vol. 124, pp. 393–401. Dekker, New York (1990)

    Google Scholar 

  51. Sibuya, Y.: Linear differential equations in the complex domain. Problems of Analytic Continuation. Am. Math. Soc., Providence (RI) (1990)

    MATH  Google Scholar 

  52. Sibuya, Y.: Uniform simplification in a full neighborhood of a transition point. Memoi. Am. Math. Soc. 149 (1974)

    Google Scholar 

  53. Sibuya, Y.: A theorem concerning uniform simplification at a transition point and a problem of resonance. SIAM J. Math. Anal. 12(5), 653–668 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  54. Skinner, L.A.: Singular Perturbation Theory. Springer, New York (2011)

    Book  MATH  Google Scholar 

  55. Skinner, L.A.: Uniform solution of boundary layer problems exhibiting resonance. SIAM J. Appl. Math. 47, 225–231 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  56. Skinner, L.A.: Matched expansion solutions of the first-order turning point problem. SIAM J. Math. Anal. 25, 1402–1411 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  57. Skinner, L.A.: A class of singularly perturbed singular Volterra integral equations. Asymptot. Anal. 22, 113–127 (2000)

    MathSciNet  MATH  Google Scholar 

  58. Szmolyan, P., Wechselberger, M.: Canards in R3. J. Differ. Equat. 177, 419–453 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  59. Vasil’eva, A.B., Butuzov, V.F.: Asymptotic Expansions of the Solutions of Singularly Perturbed Equations. Izdat. “Nauka”, Moscow (1973) (in Russian)

    Google Scholar 

  60. Wallet, G.: Surstabilité pour une équation différentielle analytique en dimension un. Ann. Inst. Fourier 40, 557–595 (1990)

    Article  MathSciNet  Google Scholar 

  61. Wasow, W.: Asymptotic Expansions for Ordinary Differential Equations. Interscience, New York (1965)

    MATH  Google Scholar 

  62. Wasow, W.: Linear Turning Point Theory. Springer, New York (1985)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fruchard, A., Schäfke, R. (2013). Composite Expansions and Singularly Perturbed Differential Equations. In: Composite Asymptotic Expansions. Lecture Notes in Mathematics, vol 2066. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34035-2_5

Download citation

Publish with us

Policies and ethics