Advertisement

Investigating Deep Lithospheric Structures

  • Lev EppelbaumEmail author
  • Izzy Kutasov
  • Arkady Pilchin
Chapter
Part of the Lecture Notes in Earth System Sciences book series (LNESS)

Abstract

During the formation of the Earth as a planet heat energy released by accretion and certain other processes was sufficient to heat the entire Earth beyond the melting point of composing it rocks. This definitely led to formation of hundreds kilometers deep magma-ocean or melting the entire planet. That molten stage could have existed for quite some time. Such processes as possible collision of Earth with Mars-size body (Moon forming event) and bombardment of surface by huge cosmic objects [e.g., “late heavy bombardment” at about 3.85–3.9 Ga] could have significantly slowed down process of solidification of magma-ocean and/or create local magma-oceans. Following solidification of magma-ocean led to formation of the lithosphere through complex processes formation and recycling rocks and minerals, interaction surface rocks with the atmosphere, formation crust, formation water-ocean, and many others. All these processes took place during general process of Earth cooling. In this Chapter such processes as the formation and evolution of magma-ocean, evolution of early Earth’s atmosphere, the formation of water-ocean, thermal regime during early lithosphere formation, dynamic interactions of the asthenosphere and the lithosphere and many other problems are discussed.

References

  1. Abd El-Naby H, Frisch W, Hegner E (2000) Evolution of the Pan-African Haimur metamorphic sole, eastern Desert. Egypt J Metamorph Geol 18(6):639–652Google Scholar
  2. Abe Y (1997) Thermal and chemical evolution of the terrestrial magma ocean. Phys Earth Plan Inter 100(1–4):27–39Google Scholar
  3. Abers GA (2009) Slip on shallow-dipping normal faults. Geology 37(8):767–768Google Scholar
  4. Aboud E, Salem A, Mekkawi M (2011) Curie depth map for Sinai Peninsula, Egypt deduced from the analysis of magnetic data. Tectonophysics 506:1–4, 46–54Google Scholar
  5. Achramowicz S, Wajsprych B (2004) First Sudetic occurrence of jadeite in metabasalts. Mineral Soc Pol Spec Pap 24:53–56Google Scholar
  6. Agard P, Vidal O, Goffé B (2001) Interlayer and Si content of phengite in HP–LT carpholite-bearing metapelites. J Metamorph Geol 19(5):479–495Google Scholar
  7. Agard P, Yamato P, Jolivet L, Burov E (2009) Exhumation of oceanic blueschists and eclogites in subduction zones: timing and mechanisms. Earth Sci Rev 92:53–79Google Scholar
  8. Agee CB (1998) Crystal-liquid density inversions in terrestrial and lunar magmas. Phys Earth Planet Int 107:63–74Google Scholar
  9. Agrinier P, Cannat M (1997) Oxygen-isotope constraints on serpentinization process in ultramafic rocks from the Mid-Atlantic Ridge (23°N). In: Karson JA, Cannat M, Miller DJ, Elthon D (eds) Proceedings of the ocean drilling program, scientific results, vol 153, pp 381–388 (Chapter 20)Google Scholar
  10. Akaogi M, Tanaka A, Ito E (2002) Garnet-ilmenite-perovskite transitions in the system Mg4Si4O12-Mg3Al2Si3O12 at high pressures and high temperatures: phase equilibria, calorimetry and implications for mantle structure. Phys Earth Planet Inter 132(4):303–324Google Scholar
  11. Akhmetov NS (1992a) Inorganic chemistry, vol 1, 3rd edn. “Prosvescheniye” Publisher. MoscowGoogle Scholar
  12. Akhmetov NS (1992b) Inorganic chemistry, vol 2, 3rd edn. “Prosvescheniye” Publishers, MoscowGoogle Scholar
  13. Alexandrov KS, Ryzhova TV, Belikov BP (1964) The elastic properties of pyroxenes. Sov Phys Crystallogr 8:589–591Google Scholar
  14. Allison IS, Black RF, Dennison JM, Fahnestock RK, White SM (1974) Geology: the science of a changing Earth, 6th edn. McGraw-Hill Book Co., USAGoogle Scholar
  15. Altinok E, Ohmoto H (2006) Soil formation beneath the Earth’s oldest known (3.46 Ga) unconformity? Geol Soc Am Ann Meet 38(7):533 (abstracts with programs)Google Scholar
  16. Al-Zoubi A (1992) Deep geologic composition of Jordan by geophysical data. Ph.D. Thesis, Mining Institute, Sankt-Petersburg (in Russian)Google Scholar
  17. ANCORP (2003) Seismic imaging of a convergent continental margin and plateau in the central Andes (Andean Continental Research Project 1996 (ANCORP’96)), ANCORP working group. J Geophys Res 108(B7, 2328):1–25Google Scholar
  18. Anderson DL (1989) Theory of the Earth. Blackwell Science, HobokenGoogle Scholar
  19. Anderson DL (1995) Lithosphere, asthenosphere, and perisphere. Rev Geophys 33(1):125–149Google Scholar
  20. Anderson DL (2002a) The case for irreversible chemical stratification of the mantle. Int Geol Rev 44(2):97–116Google Scholar
  21. Anderson DL (2002b) The inner inner core of Earth. Proc Nat Acad Sci USA 99(22):13966–13968Google Scholar
  22. Anderson DL (2006) Speculations on the nature and cause of mantle heterogeneity. Tectonophysics 416(1–4):7–22Google Scholar
  23. Anderson DL (2007) New theory of the Earth. Cambridge University Press, CambridgeGoogle Scholar
  24. Anonymous (1972) Penrose Field Conference on ophiolites. Geotimes, 17:24–25Google Scholar
  25. Arndt NT, Nisbet EG (eds) (1982) Komatiites. George Allen & Unwin, LondonGoogle Scholar
  26. Artemieva IM, Mooney WD (2001) Thermal thickness and evolution of Precambrian lithosphere: a global study. J Geophys Res 106(B8):16387–16414Google Scholar
  27. Ateş A, Bılım F, Buyuksarac A (2005) Curie point depth investigation of Central Anatolian Turkey. Pure Appl Geophys 162:357–371Google Scholar
  28. Aydın İH, Karat İ, Koçak A (2005) Curie-point depth map of Turkey. Geophys J Int 162(2):633–640Google Scholar
  29. Babist J, Handy MR, Konrad-Schmolke M, Hammerschmidt K (2006) Precollisional, multistage exhumation of subducted continental crust: the Sesia Zone, western Alps. Tectonics 25(TC6008):1–25Google Scholar
  30. Badalyan M (2000) Geothermal features of armenia: a country update. In: Transactions of the world geothermal congress, Kyushu-Tohoku, Japan, pp 71–76Google Scholar
  31. Banno S, Enami M, Hirajima T, Ishiwatari A, Wang QC (2000) Decompression P–T path of coesite eclogite to granulite from Weihai, Eastern China. Lithos 52:97–108Google Scholar
  32. Banno S, Sakai C (1989) Geology and metamorphic evolution of the Sanbagawa metamorphic belt, Japan. In: Daly JS, Cliff RH, Yardley BWD (eds) Evolution of metamorphic belts, vol 43. Geol Soc Spec Publ, pp 519-532Google Scholar
  33. Barley ME, Bekker A, Krapež B (2005) Late Archean to Early Paleoproterozoic global tectonics, environmental change and the rise of atmospheric oxygen. Earth Plan Sci Lett 238:156–171Google Scholar
  34. Barley ME, Kerrich R, Reudavy I, Xie Q (2000) Late Archaean Ti-rich, Al-depleted komatiites and komatiitic volcaniclastic rocks from the Murchison Terrane in western Australia. Aust J Earth Sci 47(5):873–883Google Scholar
  35. Bass JD (1989) Elasticity of grossular and spessartite garnets by Brillouin spectroscopy. J Geophys Res 84:7621–7628Google Scholar
  36. Bech L, Onsgaard J, Hoffmann SV, Godowski PJ (2001) CO dissociation on K-modified Cu(112) and Cu(117). Surf Sci 482–485:243–249Google Scholar
  37. Beckholmen M, Glodny J (2004) Timanian blueschist-facies metamorphism in the Kvarkush metamorphic basement, Northern Urals, Russia. Geol Soc Lond Mem 30:125–134Google Scholar
  38. Bédard JH, Hébert R (1996) The lower crust of the Bay of Islands ophiolite, Canada: Petrology, mineralogy, and the importance of syntexis in magmatic differentiation in ophiolites and at ocean ridges. J Geophys Res Solid Earth 101(B11):25105–25124Google Scholar
  39. Bejarano CA, Jia CQ, Chung KH (2001) A study on carbothermal reduction of sulfur dioxide to elemental sulfur using oilsands fluid coke. Environ Sci Technol 35(4):800–804Google Scholar
  40. Bektaş O, Ravat D, Buyuksarac A, Bılım F, Ateş A (2007) Regional geothermal characterization of East Anatolia from aeromagnetic, heat flow and gravity data. Pure Appl Geophys 164:975–998Google Scholar
  41. Benali O, Abdelmoula M, Refait Ph, Génin J-MR (2001) Effect of orthophosphate on the oxidation products of Fe(II)-Fe(III) hydroxycarbonate: the transformation of green rust to ferrihydrite. Geochim et Cosmochim Acta 65:1715–1726Google Scholar
  42. Benn K, Allard B (1989) Preffered mineral orientations related to magmatic flow in ophiolite layered gabbros. J Petrol 30:925–946Google Scholar
  43. Bennett J, Donahue M, Schneider N, Voit M (2004) The cosmic perspective, 3rd edn. San Francisco Pearson Education Inc. Publishers, Addison WesleyGoogle Scholar
  44. Berhe SM (1990) Ophiolites in Northeast Africa: implications for Proterozoic crustal growth. J Geol Soc Lond 147:41–57Google Scholar
  45. Berman RG, Engi M, Greenwoood HJ, Brown TH (1986) Derivation of internally-consistent thermodynamic data by the technique of mathematical programming: a review with application to the system MgO-SiO2-H2O. J Petrol 21:1331–1364Google Scholar
  46. Bernal JO, Dasgupta DR, Mackay AL (1959) The oxides and hydroxides of iron and their structural inter-relationships. Clay Min Bull 4:15–30Google Scholar
  47. Bernoulli D, Heitzmann P, Zinng A (1990) Central and Southern Alps in southern Switzerland. Tectonic evolution and first results of reflection seismic. In: Roure F, Heitzmann P, Polino R (eds) Deep structure of the Alps. Mém Soc Géol France, 156; Mém Soc Géol Suisse, 1; Mem Soc Geol. Italiana, vol Spec 1, pp 289–303Google Scholar
  48. Best MG (2002) Igneous and metamorphic petrology, 2nd edn. Wiley-Blackwell, Hoboken, 752pGoogle Scholar
  49. Beyssac O, Rouzaud J-N, Goffé B, Brunet F, Chopin Ch (2002) Graphitization in a high-pressure, low-temperature metamorphic gradient: a Raman microspectroscopy and HRTEM study. Contrib Mineral Petrol 143:19–31Google Scholar
  50. Bhattacharyya BK (1966) Continuous spectrum of the total magnetic field anomaly due to a rectangular prismatic body. Geophysics 31:97–121Google Scholar
  51. Bhattacharyya BK, Leu LK (1975) Analysis of magnetic anomalies over Yellowstone National Park. Mapping the Curie-point isotherm surface for geothermal reconnaissance. J Geophys Res 80:461–465Google Scholar
  52. Bhattacharyya BK, Morley LW (1965) The delineation of deep crustal magnetic bodies from total field aeromagnetic anomalies. J Geomagn Geoelectr 17:237–252Google Scholar
  53. Bickle MJ, Nisbet EG, Martin A (1994) Archean greenstone belts are not oceanic crust? J Geol 102:121–138Google Scholar
  54. Birch F, Schairer JF, Spicer HC (eds) (1942) Handbook of physical constants. Geol Soc Am. Special papers, No. 36Google Scholar
  55. Bird MI, Ayliffe LK, Fifield LK, Turney CSM, Cresswell RG, Barrows TT, David B (1999) Radiocarbon dating of “old” charcoal using a wet oxidation, stepped-combustion procedure. Radiocarbon 41(2):127–140Google Scholar
  56. Birkeland PW, Larson EE (1989) Putnam’s geology, 5th edn. Oxford University Press, OxfordGoogle Scholar
  57. Blackwell DD (1971) The thermal structure of the continental crust. In: Heacock JD (ed) The structure and physical properties of the Earth’s crust. AGU, Geophys Monogr Ser, vol 14, pp 169–184Google Scholar
  58. Blakely RJ (1988) Curie temperature isotherm analysis and tectonic implications of aeromagnetic data from Nevada. J Geophys Res 93:817–832Google Scholar
  59. Blanckenburg FV, Villa IM, Baur H, Morteani G, Steiger RH (1989) Time calibration of a PT-path from the western Tauern Window, eastern Alps: the problem of closure temperatures. Contrib Mineral Petrol 101:1–11Google Scholar
  60. Bodri L (1981) Geothermal model of the earth’s crust in the Pannonian basin. Tectonophysics 72:61–73Google Scholar
  61. Bohlen SR, Boettcher AL (1982) The quartz ⇌ coesite transformation: a presize determination and the effects of other components. J Geophys Res 87(B8):7073–7078Google Scholar
  62. Bohlen SR, Dollase WA, Wall VJ (1986) Calibration and applications of spinel equilibria in the system FeO-Al2O3-SiO2. J Petrol 27(Part 5):1143–1156Google Scholar
  63. Bohlen SR, Liotta JJ (1986) A barometer for garnet amphibolites and garnet granulites. J Petrol 27(Part 5):1025–1034Google Scholar
  64. Bohlen SR, Montana A, Kerrick DM (1991) Precise determination of the equilibria kyanite ⇆ sillimanite and kyanite ⇆ andalusite and a revised triple point for Al2SiO5 polymorphs. Am Mineral 76:677–680Google Scholar
  65. Bohlen SR, Wall VJ, Boettcher AL (1983) Experimental investigation and application of garnet granulite equilibria. Contrib Mineral Petrol 83:52–61Google Scholar
  66. Bohlen SR, Wall VJ, Boettcher AL (1983a) Experimental investigation and application of garnet granulite equilibria. Contrib Mineral Petrol 83:52–61Google Scholar
  67. Bohlen SR, Wall VJ, Boettcher AL (1983b) Experimental investigations and geological applications of equilibria in the system FeO-TiO2-Al2O3-SiO2-H2O. Am Mineral 68:1049–1058Google Scholar
  68. Boland JN (1977) Deformation mechanisms in Alpine-type ultramafic rocks from New Zealand. Tectonophysics 39(1–3):215–230Google Scholar
  69. Bosch D, Jamais M, Boudier F, Nicholas A, Dautria J-M, Agrinier P (2004) Deep and High-temperature Hydrothermal Circulation in the Oman Ophiolite—Petrological and Isotopic Evidence. J Petrol 45(6):1181–1208Google Scholar
  70. Bose K, Ganguly J (1995) Quartz-coesite transition revisited: reversed experimental determination at 500–1200 °C and retrieved thermochemical properties. Am Mineral 80:231–238Google Scholar
  71. Bousquet R, Goffé B, Vidal O, Oberhänsli R, Patriat M (2002) The tectono-metamorphic history of the Valaisan domain from the western to the central Alps: new constraints on the evolution of the Alps. Bull Geol Soc Am 114(2):207–225Google Scholar
  72. Bowen NL, Tuttle OF (1949) The system MgO-SiO2-H2O. Bull Geol Soc Am 60:439–460Google Scholar
  73. Braga R, Callegari A, Messiga B, Ottolini L, Renna MR, Tribuzio R (2003) Origin of prismatine from the Sondalo granulites (Central Alps, northern Italy). Eur J Mineral 15(2):393–400Google Scholar
  74. Brasier M, McLoughlin N, Green O, Wacey D (2006) A fresh look at the fossil evidence for early Archaean cellular life. Phil Trans R. Soc B 361(1470):887–902Google Scholar
  75. Brostigen G, Kjekshus A (1969) Redetermined crystal structure of FeS2 (pyrite). Acta Chem Scand 23:2186–2188Google Scholar
  76. Brouwer FM, Vissers RLM, Lamb WM (2002a) Metamorphic history of eclogitic metagabbro blocks from a tectonic mélange in the Voltri Massif, Ligurian Alps, Italy. Ofioliti 27:1–16Google Scholar
  77. Brouwer FM, Vissers RLM, Lamb WM (2002b) Structure and metamorphism of the Gran Paradiso massif, western Alps, Italy. Contrib Mineral Petrol 143:450–470Google Scholar
  78. Brown A, Walter M, Cudahy Th (2004) Short-wave infrared reflectance investigation of sites of paleobiological interest: applications for mars exploration. Astrobiology 4(3):359–376Google Scholar
  79. Brown AJ, Cudahy ThJ, Walter MR (2006) Hydrothermal alteration at the Panorama Formation, North Pole Dome, Pilbara Craton, Western Australia. Precambrian Res 151:211–223Google Scholar
  80. Brown EH, Ghent ED (1983) Mineralogy and phase relations in the blueschist facies of the Black Butte and Ball Rock areas, northern California Coast Ranges. Am Mineral 68:365–372Google Scholar
  81. Brown GC, Mussett AE (1993) The Inaccessible Earth. Chapman & Hall, LondonGoogle Scholar
  82. Bulina LV (1970) Peculiarities of space distribution of the magnetized formations lower edges for consolidated Earth crust. Izv AN USSR Ser Geol 5:70–75 (in Russian)Google Scholar
  83. Bunds MP (2001) Fault strength and transpressional tectonics along the Castle Mountain strike-slip fault, southern Alaska. GSA Bull 113(7):908–919Google Scholar
  84. Butler RF (1998) Paleomagnetism: magnetic domains to geologic terranes, Electronic edn. Department of Geosciences, University of Arizona Tucson, ArizonaGoogle Scholar
  85. Büyüksaraç A, Bektaş Ö (2007) Curie point depth of inner East Anatolia (Turkey). Geophys Res Abstr, vol 9, 00384, SRef-ID: 1607-7962/gra/EGU2007-A-00384Google Scholar
  86. Basaltic Volcanism on the Terrestrial Planets (BVSP) (1981) By members of the basaltic volcanism study project. Pergamon Press, New YorkGoogle Scholar
  87. Byerlee JD (1978) Friction of rocks. Pure Appl Geophys 116:615–626Google Scholar
  88. Byerly PE, Stolt RH (1977) An attempt to define the Curie point isotherm in northern and central Arizona. Geophysics 42:1394–1400Google Scholar
  89. Calvo M, Prévot M, Perrin M, Riisager J (2002) Investigating the reasons for the failure of palaeointensity experiments: a study on historical lava flows from Mt. Etna (Italy). Geophys J Int 149:44–63Google Scholar
  90. Cameron AGW (1997) The origin of the Moon and the single impact hypothesis V. Icarus 126(1):126–137Google Scholar
  91. Carbajal de la Torre G, Espinosa-Medina MA, Martinez-Villafañe A, Gonzalez-Rodriguez JG, Castaño VM (2009) Study of ceramic and hybrid coatings produced by the sol-gel method for corrosion protection. Open Corros J 2:197–203Google Scholar
  92. Carswell DA, Cuthbert SJ, Krogh-Ravna EJ (1999) Ultrahigh-pressure metamorphism in the Western Gneiss Region of the Norwegian Caledonides. Int Geol Rev 41:955–966Google Scholar
  93. Carswell DA, Zhang RY (1999) Petrographic characteristics and metamorphic evolution of ultrahigh-pressure eclogites in plate-collision belts. Int Geol Rev 41:781–798Google Scholar
  94. Champagnac J-D, Schunegger F, Norton K, von Blanckenburg F, Abbühl LM, Schwab M (2009) Erosion-driven uplift of the modern Central Alps. Tectonophysics 474(1–2):236–249Google Scholar
  95. Chen GQ, Ahrens TJ, Stolper EM (2002) Shock-wave equation of state of molten and solid fayalite. Phys Earth Plan Inter 134(1–2):35–52Google Scholar
  96. Cheng H, Reiser DB, Dean S Jr (1999) On the mechanism and energetics of Boudouard reaction at FeO(1 0 0) surface: 2CO → C + CO2. Catal Today 50(3–4):579–588Google Scholar
  97. Cherniak DJ, Watson EB (2000) Pb diffusion in zircon. Chem Geol 172:5–24Google Scholar
  98. Cherniak DJ, Watson EB (2003) Diffusion in zircon. Rev Mineral Geochem 53:113–143Google Scholar
  99. Chew DM, Daly JS, Page LM, Kennedy MJ (2003) Grampian orogenesis and the development of blueschist-facies metamorphism in western Ireland. J Geol Soc Lond 160:911–924Google Scholar
  100. Chiozzi P, Matsushima J, Okubo Y, Pasquale V, Verdoya M (2005) Curie-point depth from spectral analysis of magnetic data in central–southern Europe. Phys Earth Plan Int 152(4):267–276Google Scholar
  101. Chopin Ch (2000) The internal massifs of the Westem Alps: Monte Rosa, Gran Paradiso and Dora-Maira. In: Proceedings of annual meeting, Swiss Society of Mineralogy and Petrology, WinterthurGoogle Scholar
  102. Christensen NI (1979) Compressional wave velocities in rocks at high temperatures and pressures, critical thermal gradients, and crustal low-velocity zones. J Geophys Res 84(B12):6849–6859Google Scholar
  103. Chyba ChF (1990) Impact delivery and erosion of planetary oceans in the early inner solar system. Nature 343:129–133Google Scholar
  104. Clark KF (1982) Mineral composition of rocks. In: Carmichael RS (ed) Handbook of physical properties of Rocks, vol I. CRC Press, FloridaGoogle Scholar
  105. Clark SP Jr. (ed) (1966) Handbook of physical constants, revised edn. Geol Soc Am. Memoir 97, Washington, D.C.Google Scholar
  106. Clauser Ch (2009) Heat transport processes in the Earth’s crust. Surv Geophys 30:163–191Google Scholar
  107. Coleman RG (1971) Petrologic and geophysical nature of serpentinites. GSA Bull 82(4):897–918Google Scholar
  108. Coleman RG (1977) Ophiolites (Ancient oceanic lithosphere?). Springer, BerlinGoogle Scholar
  109. Coleman RG, Wang X (1995) Overview of the geology and tectonics of UHPM. In: Coleman RG, Wang X (eds) Ultrahigh pressure metamorphism, Cambridge University Press, Cambridge, pp 1–32Google Scholar
  110. Conard BR, Sridhar R, Warner JS (1980) High-temperature thermodynamic properties of chalcopyrite. J Chem Thermodyn 12:817–833Google Scholar
  111. Condie KC (1981) Archean greenstone belts. Elsevier, AmsterdamGoogle Scholar
  112. Condie KC (1997) Plate tectonics and crustal evolution, 4th edn. Butterworth Heinemann, OxfordGoogle Scholar
  113. Condie KC (2001) Mantle plumes and their record in earth history. Cambridge University Press, CambridgeGoogle Scholar
  114. Condie KC (2005) Earth as an evolving planetary system. Elsevier, AmsterdamGoogle Scholar
  115. Connard G, Couch R, Gemperle M (1983) Analysis of aeromagnetic measurements from the Cascade range in central Oregon. Geophysics 48:376–390Google Scholar
  116. Cook CA, Holdsworth RE, Styles MT, Pearce JA (2000) Pre-emplacement structural history recorded by mantle peridotites: an example from the Lizard Complex, SW England. J Geol Soc Lond 157:1049–1064Google Scholar
  117. Coombs ML, Gardner JE (2004) Reaction rim growth on olivine in silicic melts –implications for magma mixing. Am Mineral 89(5–6):748–759Google Scholar
  118. Courtial Ph, Ohtani E, Dingwell DR (1997) High-temperature densities of some mantle melts. Geochim et Cosmochim Acta 61:3111–3119Google Scholar
  119. Cox J (2000) Subduction-obduction related petrogenetic and metamorphic evolution of the Semail ophiolite sole in Oman and the United Arab Emirates. PhD thesis, University of OxfordGoogle Scholar
  120. Cramer SD, Covino BS Jr (eds) (2005) ASM handbook volume 13B, corrosion, 10th edn. Materials ASM InternationalGoogle Scholar
  121. Cunningham D, Owen LA, Snee LW, Jilliang L (2003) Structural framework of a major intracontinental orogenic termination zone: the easternmost Tien Shan, China. J Geol Soc Lond 160:575–590Google Scholar
  122. Bjonnes E, Lindsay JF (2005) The depositional setting of earth's earliest sedimentary rocks. Lunar and Plan Sci XXXVI:1821Google Scholar
  123. Dal Piaz G (2010) The Italian Alps: a journey across two centuries of Alpine geology. In: Beltrando M, Peccerillo A, Mattei M, Conticelli S, Doglioni C (eds) The geology of Italy: tectonics and life along plate margins, electronic edn, vol 36, paper 8. J Virtual Explorer. doi:  10.3809/jvirtex.2010.00234
  124. Dal Piaz GV, Cortiana G, Del Moro A, Martin S, Pennacchioni G, Tartarotti P (2001) Tertiary age and paleostructural inferences of the eclogitic imprint in the Austroalpine outliers and Zermatt-Saas ophiolite, Western Alps. Int J Earth Sci 90:668–684Google Scholar
  125. Dallmeyer RD, Neubauer F, Fritz H, Mocanu V (1998) Variscan vs. Alpine tectonothermal evolution of the southern Carpathian orogen: constraints from 40Ar/39Ar ages. Tectonophysics 290:111–135Google Scholar
  126. Davaille A (1999) Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature 402:756–760Google Scholar
  127. Davis BTC, England JL (1964) The melting of forsterite up to 50 kilobars. J Geophys Res 69:1113–1116Google Scholar
  128. Davis D, Suppe J, Dahlen FA (1983) Mechanics of fold-and-thrust belts and accretionary wedges. J Geophys Res 88(B2):1153–1172Google Scholar
  129. Davis GH, Reynolds SJ (1996) Structural geology of rocks and regions. Wiley, NYGoogle Scholar
  130. Davis JR (ed) (2000) Nickel, cobalt, and their alloys. ASM International Handbook CommGoogle Scholar
  131. de Koker NP, Stixrude L, Karki BB (2008) Thermodynamics, structure, dynamics, and freezing of Mg2SiO4 liquid at high pressure. Geochim et Cosmochim Acta 72:1427–1441Google Scholar
  132. de Vries ST, Touret JLR (2007) Early Archaean hydrothermal fluids; a study of inclusions from the ~3.4 Ga Buck Ridge Chert, Barberton Greenstone Belt, South Africa. Chem Geol 237:289–302Google Scholar
  133. Desmons J (1985) Ophiolites through time: an introductions. Ofioliti 10(2/3):103–108Google Scholar
  134. Dilek Y (2003) Ophiolite concept and its evolution. In: Dilek Y, Newcomb S (eds) Ophiolite concept and the evolution of geological thought: Boulder, Colorado. Geol Soc Am Spec Pap 373, pp 1–16Google Scholar
  135. DiMarco MJ, Lowe DR (1989) Petrography and provenance of silicified early Archaean volcaniclastic sandstones, eastern Pilbara Block, western Australia. Sedimentology 36(5):821–836Google Scholar
  136. Djenchuraeva RD, Borisov FI, Pak NT, Malyukova NN (2008) Metallogeny and geodynamics of the Aktiuz-Boordu Mining District, Northern Tien Shan, Kyrgyzstan. J Asian Earth Sci 32(2–4):280–299Google Scholar
  137. Dolmaz MN, Ustäomer T, Hisarli ZM, Orbay N (2005) Curie Point Depth variations to infer thermal structure of the crust at the African-Eurasian convergence zone, SW Turkey. Earth Plan Space 57:373–383Google Scholar
  138. Downs RT, Yang H, Hazen RM, Finger LW, Prewitt CT (1999) Compressibility mechanisms of alkali feldspars: New data from reedmergnerite. Am Mineral 84:333–340Google Scholar
  139. Driscoll JP, Mortimer L, Waining B, Cordon E, Beardsmore GR (2009) Geothermal energy potential in selected Aareas of Western Australia (Canning Basin). A report prepared for the Department of Mines and Petroleum, Western Australia. Report DOIR0681008Google Scholar
  140. Eggler DH (1976) Does CO2 cause partial melting in the low-velocity layer of the mantle? Geology 4(2):69–72Google Scholar
  141. Eggleton RA, Banfield JF (1985) The alteration of granitic biotite to chlorite. Am Mineral 70:902–910Google Scholar
  142. El Nabi SHA (2012) Curie point depth beneath the barramiya–Red Sea coast area estimated from aeromagnetic spectral analysis. Arab J Geosci 5(6):1209–1221Google Scholar
  143. Engi M (2011) Metamorphic structure and evolution of the central Alps. Géochronique 117:1–11Google Scholar
  144. Eppelbaum LV, Khesin BE (2012) Geophysical studies in the Caucasus. Springer, BerlinGoogle Scholar
  145. Eppelbaum LV, Modelevsky MM, Pilchin AN (1996) Geothermal investigations in the Dead Sea Rift zone, Israel: implications for petroleum geology. J Pet Geol 19(4):425–444Google Scholar
  146. Eppelbaum LV, Pilchin AN (2004) Newly developed maps of Moho and Curie discontinuities for Levant as a basis for innovative models of the Earth’s crust on Cyprus and in southern Israel. Transactions of special session of the 2004 CGU/AGU/SEG joint assembly. Montreal, Canada, GP21A-01Google Scholar
  147. Eppelbaum LV, Pilchin AN (2006) Methodology of Curie discontinuity map development for regions with low thermal characteristics: an example from Israel. Earth Plan Sci Lett 243(3–4):536–551Google Scholar
  148. Eriksson PG, Reczko BFF, Callaghan CC (1997) The economic mineral potential of the mid-Proterozoic Waterberg Group, northwestern Kaapvaal craton, South Africa. Miner Deposita 32:401–409Google Scholar
  149. Evans B (2004) The serpentinite multisystem revisited: Chrysotile is metastable. Int Geol Rev 46(6):479–506Google Scholar
  150. Evans BW, Johannes W, Oterdoom H, Trommsdorff V (1976) Stability of chrysotile and antigorite in the serpentinite multisystem. Schweiz Mineral Petrogr Mitt 56:79–93Google Scholar
  151. Farquhar J, Bao H, Thiemans M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–758Google Scholar
  152. Faryad SW (1999) Exhumation of the Meliata high-pressure rocks (Westerm Carpathians): petrological and structural records in blueschists. Acta Monstanistica Slovaca Ročnik 4(2):137–144Google Scholar
  153. Faure G, Mensing TM (2007) Introduction to planetary science: the geological perspective. Springer, BerlinGoogle Scholar
  154. Fripp REP (1976) Stratabound gold deposits in Archean banded iron-formation, Rhodesia. Economic Geol 71:58–75Google Scholar
  155. Froitzheim N, Conti P, van Daalen M (1997) Late Cretaceous, synorogenic, low-angle normal faulting along the Schlinig fault (Switzerland, Italy, Austria) and its significance for the tectonics of the Eastern Alps. Tectonophysics 280:267–293Google Scholar
  156. Fügenschuh B, Mancktelow NS, Seward D (2000) The Cretaceous to Neogene cooling and exhumation history of the Oetztal-Stubai basement complex, eastern Alps: a structural and fission-track study. Tectonics 19:905–918Google Scholar
  157. Gaboury D, Daigneault D, Beaudoin G (2000) Volcanogenic-related origin of sulfide-rich quartz veins: evidence from O and S isotopes at the Géant Dormant gold mine, Abitibi belt, Canada. Mineral Deposita 35:21–36Google Scholar
  158. Gabriel G, Dressel I, Vogel D (2012) Depths to the bottom of magnetic sources and geothermal prospectivity in southern Germany. First Break 30(4):39–47Google Scholar
  159. Galetsky LS, Derenyuk NE, Bogach DI, Yaroschuk MA, Lebedev YuS, Vaylo AB (1985) Iron-silica rocks of Froonzovskikh magnetic anomalies of the Ukrainean shield. Geophys J 45(5):1–12 (in Russian)Google Scholar
  160. Ganne J, Bussy F, Vidal O (2003) Multi-stage Garnet in the Internal Briançonnais Basement (Ambin Massif, Savoy): New Petrological Constraints on the Blueschist-facies Metamorphism in the Western Alps and Tectonic Implications. J Petrol 44(7):1281–1308Google Scholar
  161. Gao J, Klemd R (2003) Formation of HP–LT rocks and their tectonic implications in the western Tianshan Orogen, NW China: geochemical and age constraints. Lithos 66:1–22Google Scholar
  162. Gao J, Zhang L, Liu Sh (2000) The 40Ar/39Ar age record of formation and uplift of the blueschists and eclogites in the western Tianshan Mountains. Chinese Sci Bull 45(11):1047–1051Google Scholar
  163. Garverick L (1994) Corrosion in the petrochemical Industry. ASM InternationalGoogle Scholar
  164. Gasparik T (1985) Experimentally determined compositions of diopside-jadeite pyroxene in equilibrium with albite and quartz at 1200–1350°C and 15–34 kbar. Geochim et Cosmochim Acta 49:865–870Google Scholar
  165. Gates-Anderson DD, Laue CA, Fitch TE (2004) Dissolution treatment of depleted uranium waste. The US Department of Energy by University of California, Lawrence Livermore National Laboratory, Livermore, UCRL-TR-202275Google Scholar
  166. Geurts FWAH, Sacco A Jr (1992) The relative rates of the boudouard reaction and hydrogenation of CO over Fe and Co foils. Carbon 30(3):415–418Google Scholar
  167. Ghiorso M (2004) An equation of state for silicate melts. Parts I, III, IV. Am J Sci 304:637–678, 752–810, 811–838Google Scholar
  168. Giese P, Morelli C, Steinmetz L (1973) Main features of crustal structure in Western and Southern Europe based on data of explosion seismology. Tectonophysics 20:367–379Google Scholar
  169. Gilotti JA, Ravna EJK (2001) Ultrahigh-pressure metamorphism in the Greenland Caledonides–Microstructural and thermobarometric evidence. GSA annual meeting, Nov 5–8, Paper No. 157-094Google Scholar
  170. Gislason SR, Arnórsson S (1993) Dissolution of primary basaltic minerals in natural waters: saturation state and kinetics. Chem Geol 105(1–3):117–135Google Scholar
  171. Gnos E, Nicolas A (1996) Structural evolution of the northern end of the Oman Ophiolite and enclosed granulites. Tectonophysics 254:111–137Google Scholar
  172. Godfrey NJ, Klemperer SL (1998) Ophiolitic basement to a forearc basin and implications for continental growth: the Coast Range/Great Valley Ophiolite, California. Tectonics 17(4):558–570Google Scholar
  173. Golden DC, Ming DW, Lauer HV Jr, Morris RV (2004) Thermal decomposition of sideritepyrite assemblages: implications for sulfide mineralogy in martian meteorite ALH84001 carbonate globules. Lunar Plan Sci XXXV:1396Google Scholar
  174. Golding SD, Duck LJ, Young E, Baublys KA, Glikson M, Kamber BS (2011) Earliest seafloor hydrothermal systems on Earth: comparison with modern analogues. In: Golding SD, Glikson M (eds) Earliest life on Earth: habitats, environments and methods of detection. Springer B.V., Dordrecht, pp 15–50Google Scholar
  175. Goldman SD, Kasting JF (2005) What does the absence of mass-independent fractionation of sulfur isotopes at 2.8–3.2 Ga say about the early atmosphere? In: EOS, Transactions of AGU, vol 86, No 52, fall meeting supplementry, abstract V21F-06Google Scholar
  176. Gole MJ, Klein C (1981) Banded iron-formations through much of Precambrian time. J Geol 89:169–183Google Scholar
  177. Goodwin AM (1977) Archean volcanism in Superior Proince, Canada Shield. Geol Assoc Can 16:205–241 (special paper)Google Scholar
  178. Gramberg IS, Verba VV, Verba ML, Kos’ko MK (1999) Sedimentary cover thickness map sedimentary basins in the Arctic. Polarforschung 69:243–249Google Scholar
  179. Grandstaff DE, Edelman MJ, Foster RW, Zbinden E, Kimberley MM (1986) Chemistry and mineralogy of Precambrian paleosols at the base of the Dominion and Pongola Groups (Transvaal, South Africa). Precambr Res 32:97–131Google Scholar
  180. Grapes RH, Challis GA (1999) Gersdorffite with pentlandite, violarite, pyrrhotite, and pyrite, northwest Nelson, New Zealand. NZ J Geol Geophys 42:189–204Google Scholar
  181. Green DH, Ringwood AE (1967) An experimental investigation of of the gabbro to eclogite transformation and its petrological applications. Geochim et Cosmochim Acta 31:767–833Google Scholar
  182. Green DH, Ringwood AE (1972) A comparison of recent experimental data on the gabbro—garnet granulite—eclogite transition. J Geol 80(3):277–288Google Scholar
  183. Green TH (1967) An experimental investigation of sub-solidus assemblages formed at high pressure in high-alumina basalt, kyanite eclogite and grosspydite compositions. Contrib Mineral Petrol 16:84–114Google Scholar
  184. Gregory RT, Gray DR, Miller JMcL (1998) Tectonics of the Arabian margin associated with the formation and exhumation of high-pressure rocks, Sultanate of Oman. Tectonics 17(5):657–670Google Scholar
  185. Grønvold F, Stølen S, Tolmach P, Westrum EF Jr (1993) Heat capacities of the wüstite Fe0.9379O and Fe0.9254O) at temperatures T from 5 K to 350 K. Thermodynamics of the reaction:xFe(s) + (1/4)Fe3O4(s) = Fe0.7500 + xO(s) = Fe1-yO(s) at ≈850 K, and properties of Fe1-yO(s) to T = 1000 K. Thermodynamics of formation of wüstite. J Chem Thermodyn 25:1089–1117Google Scholar
  186. Groves DI, Phillips GN, Falconer LJ, Houstoun SM, Ho SE, Browning P, Dahl N, Mcnaughton MJ (1987) Evidence for an epigenetic origin for BIF-hosted gold deposits in the greenstone belts of the Yilgarn Block, Western Australia. In: Ho SE, Groves DI (eds) Recent advances in understanding precambrian gold deposits. University of Western Australia, Perth, Publ. 2, pp 167–179Google Scholar
  187. Guillot S, Hattori K, Agard Ph, Schwartz S, Vidal O (2009) In: Lallemand S, Funiciello F (eds) Subduction zone geodynamics. Springer, Berlin, pp 175–205Google Scholar
  188. Gung Y, Panning M, Romanowicz B (2003) Global anisotropy and the thickness of continents. Nature 422:707–711Google Scholar
  189. Gupta CK (2003) Chemical metallurgy: principles and practice. Wiley, HobokenGoogle Scholar
  190. Gutenberg B (1959) Physics of the Earth’s interior. Academic Press, NYGoogle Scholar
  191. Hacker BR (1990) Simulation of the metamorphic and deformational history of the metamorphic sole of the Oman Ophiolite. J Geophys Res 95(84):4895–4907Google Scholar
  192. Halliday AN (2008) A young Moon-forming giant impact at 70–110 million years accompanied by late-stage mixing, core formation and degassing of the Earth. Philosoph Trans Ser A, Math Phys Eng Sci 366:4163–4181Google Scholar
  193. Hannington MD, Herzig PM, Scott SD (1991) Auriferous hydrothermal precipitates on the modern seafloor. In: Foster RP (eds) Gold metallogeny and exploration. Blackie & Son Ltd., London, pp 249–282Google Scholar
  194. Harlov DE, Newton RC (1992) Experimental determination of the reaction 2magnetite + 2Kyanite + 4quartz = 2almandine + O2 at high pressure on the magnetite-hematite buffer. Am Mineral 77:558–564Google Scholar
  195. Harlov DE, Newton RC (1993) Reversal of metastable kyanite + corundum + quartz and andalusite + corundum + quartz equilibria and the enthalpy of formation of kyanite and andalusite. Am Mineral 78:594–600Google Scholar
  196. Harper G, Saleeby J, Heizler M (1994) Formation and emplacement of the Josephine ophiolite and the Nevadan orogeny in the Klamath Mountains, California-Oregon: U/Pb zircon and 40Ar/39Ar geochronology. J Geophys Res 99(B3):4293–4321Google Scholar
  197. Harris AC, White NC, McPhie J, Bull SW, Line MA, Skrzeczynski R, Mernagh TP, Tosdal RM (2009) Early Archean hot springs above epithermal veins, North Pole, Western Australia: new insights from fluid inclusion microanalysis. Econ Geol 104:793–814Google Scholar
  198. Hartlaub R, Dunn C, Davis B (2009) Sediment hosted Cu mineralization of the mesoproterozoic belt-purcell basin, southeast British Columbia. Eos Trans AGU, 90, No 22, Jt. Assem. Suppl, Abstract GA71A-12Google Scholar
  199. Hatton C (2009) Geotherms, lithosphere and sedimentary basins. In: Transactions of the 11th SAGA Biennial technical meeting and exhibition, Swaziland, pp 217–220Google Scholar
  200. Hearmon RFS (1979) The elastic constants of crystals and other anisotropic materials. In: Hellwege KH, Hellwege AM (eds) Landolt-Biirnstein tables, III/11. Springer, Berlin, p l-244Google Scholar
  201. Hearmon RFS (1984) The elastic constants of crystals and other anisotropic materials. In: Hellwege KH, Hellwege AM (eds) Landolt-Biirnstein tables, III/18, Springer, Berlin, pp 1–153Google Scholar
  202. Heinemann S, Sharp TG, Seifert F, Rubie DC (1997) The cubic-tetragonal phase transition in the system majorite (Mg4Si4O12)—pyrope (Mg3Al2Si3O12), and garnet symmetry in the Earth’s transition zone. Phys Chem Miner 24(3):206–221Google Scholar
  203. Hellmann R (1994) The albite-water system: part I. The kinetics of dissolution as a function of pH at 100, 200 and 300°C. Geochim et Cosmochim Acta 58(2):595–611Google Scholar
  204. Hellmann R, Dran J-C, Della Mea G (1997) The albite-water system: Part III. Characterization of leached and hydrogen-enriched layers formed at 300°C using MeV ion beam techniques. Geochim et Cosmochim Acta 61(8):1575–1594Google Scholar
  205. Helmstaedt H, Scott DJ (1992) The Proterozoic ophiolite problem. In: Condie KC (ed) Proterozoic crustal evolution: developments in precambrian geology, vol 10. Elsevier, Amsterdam, pp 55–95Google Scholar
  206. Hemingway BS, Bohlen SR, Hankins WB, Westrum EJ, Kuskov OL (1998) Heat capasity and thermodynamic properties for coesite and jadeite: Reexamination of the quartz-coesite equilibrium boundary. Am Mineral 83:409–418Google Scholar
  207. Hermann J, Müntener O, Scambelluri M (2000) The importance of serpentinite mylonites for subduction and exhumation of oceanic crust. Tectonophysics 327:225–238Google Scholar
  208. Hess HH (1955) Serpentinites, orogeny and epeirogeny. Geol Soc Am Spec Pap 62:391–407Google Scholar
  209. Hess HH (1962) History of ocean basins. In: Engel AEJ, James HL, Leonard BF (eds) Petrologic studies: a volume in honor of A.F. Buddington. Geol Soc Am NY, pp 599–620Google Scholar
  210. Hewins RH, Jones RH, Scott ERD (eds) (1996) Chondrules and the protoplanetary disk. Cambridge University Press, CambridgeGoogle Scholar
  211. Hirschmann MM (2006) Water, melting, and the deep Earth H2O cycle. Annu Rev Earth Planet Sci 34:629–653Google Scholar
  212. Hofmann A, Wilson AH (2007) Silicified basalts, bedded cherts and other sea floor alteration phenomena of the 3.4 Ga Nondweni Greenstone Belt, South Africa. In: Van Kranendonk MJ, Smithies RH, Bennett VC (eds) Earth’s oldest rocks, developments in precambrian geology, vol 15, Condie KC, (series ed), Elsevier, Amsterdam, 571–605 (Chapter 5.5)Google Scholar
  213. Holland HD (1984) The chemical evolution of atmosphere and oceans. Princeton University Press, PrincetonGoogle Scholar
  214. Holland TJB (1979) Experimental determination of the reaction paragonite = jadeite + kyanite + H2O, and internally consistent thermodynamic data for part of the system Na2O–Al2O3–SiO2–H2O, with applications to eclogites and blueschists. Contrib Miner Petrol 68:293–301Google Scholar
  215. Holland TJB (1980) The reaction albite = jadeite + quartz determined experimentally in the range 600–1200 °C. Am Mineral 65:129–134Google Scholar
  216. Holleman AF, Wiberg E, Wiberg N (2001) Inorganic chemistry. Academic Press, San DiegoGoogle Scholar
  217. Hong Y, Fegley B Jr (1997) Kinetics and mechanism of pyrite thermal decomposition. Ber Bunsenges Phys Chem 101:1870–1881Google Scholar
  218. Hsü KJ (1994) The geology of switzerland (an introduction to tectonic facies). Princeton University Press, PrincetonGoogle Scholar
  219. Huang W-L, Wylley PJ (1975) Melting reactions in the system NaAlSi3O8−KalSi3O8−SiO2 to 35 kilobars, dry and with excess water. J Geol 83:737–748Google Scholar
  220. Hughes S, Luetgert J (1991) Crustal structure of the western New England appalachians and the adirondack mountains. J Geophys Res 96(B10):16471–16494Google Scholar
  221. Hurford A, Hunziker J, Stöckhert B (1991) Constraints on the late thermotectonic evolution of the western Alps: evidence for episodic rapid uplift. Tectonics 10(4):758–769Google Scholar
  222. Huston DL, Logan GA (2004) Barite, BIFs and bugs: evidence for the evolution of the Earth’s early hydrosphere. Earth Plan Sci Lett 220:41–55Google Scholar
  223. Huston DL, Stevens B, Southgate PN, Muhling P, Wyborn L (2006) Australian Zn-Pb-Ag Ore-forming systems: a review and analysis. Econ Geol 101:1117–1157Google Scholar
  224. Hyppolito T, Juliani C (2011) Atoll garnet textures in eclogitic rocks of the Diego de Almagro Island, Chilean Patagonia: Genesis and tectono-metamorphic implications. Geoph Res Abstr, vol 13, EGU2011-786-3Google Scholar
  225. Ikari MJ, Saffer DM, Marone C (2009) Frictional and hydrologic properties of clay-rich fault gouge. J Geophys Res 114:B05409Google Scholar
  226. Ishiwatari A (1994) Circum-Pacific Phanerozoic multiple ophiolite belts. In: Ishiwatari A et al. (eds) Circum-Pacific ophiolites: proceedings of the 29th IGC ophiolite symposium, VSP Publ. Netherlands, pp 7–28Google Scholar
  227. Ishiwatari A, Sokolov SD, Vysotskiy SV (2003) Petrological diversity and origin of ophiolites in Japan and Far East Russia with emphasis on depleted harzburgite. In: Dilek Y, Robinson PT (eds) Ophiolites in Earth history. Geol Soc LondSpec Publ 218, pp 597–617Google Scholar
  228. Ishiwatari A, Tsujimori T (2003) Paleozoic ophiolites and blueschists in Japan and Russian Primorye in the tectonic framework of east Asia: a synthesis. Island Arc 12:190–206Google Scholar
  229. Isley AE, Abbott DH (1999) Plume-related mafic volcanism and the deposition of banded iron formation. J Geophys Res 104:15461–15477Google Scholar
  230. Ito K, Kennedy GC (1971) An experimental stady of basalt—garnet granulite—eclogite transition. In: The structure and physical properties of the Earth’s crust, vol 14. Am Geophys Union Geophys Monogr, pp 303–314Google Scholar
  231. Jackson I, Khanna SK (1990) Elasticity, shear-mode softening and high pressure polymorphism of Wiistite (Fe1-xO). J Geophys Res 95:21671–21685Google Scholar
  232. Jakubke H-D, Jeschkeit H (1993) Concise encyclopedia chemistry, revised edn. ABC Chemie, Walter De Gruyter & CO., BerlinGoogle Scholar
  233. James HL (1983) Distribution of banded iron-formation in space and time. In: Trendall AFR, Morris C (eds) Iron-formation facts and problems. Elsevier, Amsterdam, pp 471–490Google Scholar
  234. Jaupart C, Mareschal JC (2007) Heat flow and thermal structure of the lithosphere. In: Schubert G (ed) Treatise of geophysics vol 6. Elsevier, Oxford, pp 217–252Google Scholar
  235. Johannes W (1968) Experimental investigation of the reaction forsterite + H2O ⇌ serpentine + brucite. Contrib Mineral Petrol 19(4):309–315Google Scholar
  236. Johannes W, Chipman DW, Hays JF, Bell PM, Mao HK, Newton RC, Boetcher AL, Seifert F (1971) An Interlaboratory comparison of piston-cylinder pressure calibration using the albite-breakdown reaction. Contrib Miner Petrol 32:24–38Google Scholar
  237. Kamber BS (2007) The enigma of the terrestrial protocrust: Evidence for its former existence and the importance of its complete disappearance. In: van Kranendonk MJ, Smithies HRH, Bennett V (eds) Earth’s oldest rocks. Elsevier, Amsterdam, pp 75–90Google Scholar
  238. Karastathis VK, Papoulia J, Di Fiore B, Makris J, Tsambas A, Stampolidis A, Papadopoulos GA (2010) Exploration of the deep structure of the central Greece geothermal field by passive seismic and Curie depth analysis. in: Transactions of the 72nd EAGE conference and exhibition incorporating SPE EUROPEC 2010, Barcelona, SpainGoogle Scholar
  239. Kasting JF (1993) Earth’s early atmosphere. Special section: evolution of atmospheres. Science 259:920–926Google Scholar
  240. Kasting JF, Ackerman TP (1986) Climate consequences of very high carbon dioxide levels in the Earth’s early atmosphere. Science 234:1383–1385Google Scholar
  241. Kasting JF, Donahue TM (1980) The evolution of atmospheric oxygen. J Geophys Res 85:3255–3263Google Scholar
  242. Kasting JF, Donahue TM (1981) Evolution of oxygen and ozone in the earth’s atmosphere. In: Billingham J (ed) Life in the universe. MIT Press, Cambridge pp 149–162Google Scholar
  243. Kasting JF, Howard MT (2006) Atmospheric composition and climate on the early Earth. Phil Trans R Soc B 361:1733–1742Google Scholar
  244. Kasting JF, Ono S (2006) Palaeoclimates: the first two billion years. Phil Trans R Soc B 361:917–929Google Scholar
  245. Kato T, Enami M, Zhai M (1997) Ultra-high pressure (UHP) marble and eclogite in the Su-Lu UHP terrane, eastern China. J Metamorphic Geol 15:169–182Google Scholar
  246. Kaula WM (1979) Thermal evolution of the Earth and Moon growing by planetesimal impacts. J Geophys Res 84:999–1008Google Scholar
  247. Kaz’min VG (1991) On tectonic conditions of formation of Troodos and Mamonia complexes (Cyprus island). Geotectonics (Geotektonika) 6:104–116 (in Russian)Google Scholar
  248. Kaz’min VG, Verzhbitskii EV (2011) Age and origin of the south Caspian Basin. Oceanology 51(1):131–140Google Scholar
  249. Kent AJR, Hutcheon ID, Ryerson FJ, Phinney DL (2001) The temperature of formation of carbonate in martian meteorite ALH84001: constraints from cation diffusion. Geochim et Cosmochim Acta 65(2):311–321Google Scholar
  250. Kerimov KM, Andreev LI, Pilchin AN et al (1988) Development of the combined geological and geophysical model of the Earth crust of the Caucasus. Scientific report 002-1, Baku, YuzhVNIIGeofizika (in Russian)Google Scholar
  251. Kerimov KM, Pilchin AN, Gadzhiev TG, Buachidze GY (1989). Geothermal map of the Caucasus, scale 1:1,000,000, Baku, cartographic plant No. 11 (in Russian)Google Scholar
  252. Kerimov KM, Pilchin AN, Ibragimov SM (1980) Influence of thermodynamical factor on the overhigh pressure in sedimentary strata. Azerbajan Oil Industry (Azerbaijanskoe Neftyanoe Khozyaistvo) 2:6–9 (in Russian)Google Scholar
  253. Khain V Ye (1973) General geothectonics, 2nd edn. Nedra, Moscow (in Russian)Google Scholar
  254. Khain V Ye (1984) Regional geotectonics. The alpine mediterranean belt. Nauka, Moscow (in Russian)Google Scholar
  255. Khain VE (1984) The alpine-mediterranean fold belt of the USSR. Episodes 7(3):20–29Google Scholar
  256. King DM, Liang X, Burton BB, Akhtar MK, Weimer AW (2008) Passivation of pigment-grade TiO2 particles by nanothick atomic layer deposited SiO2 films. Nanotechnology 19(25):255604Google Scholar
  257. Kim RH, Yum BW, Chang HW (2002) Hydrogeochemical and isotopic characteristics for salinization of a shallow groundwater in a coastal area, Youngkwang, Korea Translation in: Proceedings of the 17th salt water intrusion meet., Delft, The Netherlands, 227–237 Google Scholar
  258. Kitajima K, Maruyama S, Utsunomiya S, Liou JG (2001) Seafloor hydrothermal alteration at an Archaean mid-ocean ridge. J Metamorphic Geol 19:583–599Google Scholar
  259. Kiyokawa S, Ito T, Ikehara M, Kitajima F (2006) Middle Archean volcano-hydrothermal sequence: bacterial microfossil-bearing 3.2 Ga Dixon Island Formation, coastal Pilbara terrane, Australia. GSA Bull 118(1–2):3–22Google Scholar
  260. Klein C (2005) Some Precambrian banded ironformations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. Am Miner 90:1473–1499Google Scholar
  261. Klemd R, Bröcker M, Hacker BR, Gao J, Gans P, Wemmer K (2005) New age constraints on the metamorphic evolution of the high-pressure/low-temperature belt in the Western Tianshan Mountains, NW China. J Geol 113:157–168Google Scholar
  262. Klemperer SL (2006) Crustal flow in Tibet: geophysical evidence for the physical state of Tibetan lithosphere, and inferred patterns of active flow. In: Law RD, Searle MP, Godin L (eds) Channel flow, ductile extrusion and exhumation in continental collision zones. Geol Soc Spec Publ 268, pp 39–70Google Scholar
  263. Knittle E (1995) Static compression measurements of equations of state. In: Ahrens TJ (ed) Mineral physics and crystallography: a handbook of physical constants. American Geophysical Union, Washington, DC, pp 98–142Google Scholar
  264. Knoll AH, Grotzinger JP, Kaufman AJ, Kolosov P (1995) Integrated approaches to terminal Proterozoic stratigraphy: an example from the Olenek Uplift, northeastern Siberia. Precambr Res 73:251–270Google Scholar
  265. Koeberl Ch (2006) Impact processes on the early Earth. Elements 2(4):211–216Google Scholar
  266. Kojima S, Hanamuro T, Hayashi K, Haruna M, Ohmoto H (1998) Sulphide minerals in early Archean chemical sedimentary rocks of the eastern Pilbara district, Western Australia. J Miner Petrol 64(1–4):219–235Google Scholar
  267. Koller F, Höck V (1999) Comparison of LT/HP Metamorphism in Mesozoic units of the eastern Alps, Tübinger Geowissenschaftliche Arbeiten. Abstracts of the 4th workshop on alpine geological studies, Tübingen, series A, vol 52, pp 37–38Google Scholar
  268. König I, Haeckel M, Drodt M, Suess E, Trautwein AX (1999) Reactive Fe(II) layers in deep-sea sediments. Geochim et Cosmochim Acta 63:1517–1526Google Scholar
  269. Kontinen A (1987) An early Proterozoic ophiolite—the Jormua mafic—ultramafic Complex, northeastern Finland. Precambr Res 35:313–341Google Scholar
  270. Kopf A, Behrmann JH, Deyhle A, Roller S, Erlenkeuser H (2003) Isotopic evidence (B, C, O) of deep fluid processes in fault rocks from the active Woodlark Basin detachment zone. Earth Plan Sci Lett 208:51–68Google Scholar
  271. Koziol AM (2001) A siderite-magnesite decarbonation study. In: Proceedings of the geological society of america national meeting, vol 33, Abstract No. 25840Google Scholar
  272. Koziol AM (2004) Experimental determination of siderite stability and application to Martian Meteorite ALH84001. Am Mineral 89(2–3):294–300Google Scholar
  273. Kryza R, Willner AP, Massonne H-J, Muszyński A, Schertl H-P (2011) Blueschist-facies metamorphism in the Kaczawa Mountains (Sudetes, SW Poland) of the Central-European Variscides: P–T constraints from a jadeite-bearing metatrachyte. Mineral Mag 75(1):241–263Google Scholar
  274. Kubota M, Kyaw K, Watanabe F, Matsuda H, Hasatani M (2000) Study of decarbonation of CaCO3 for high temperature thermal energy storage. JCEJAB J Chem Eng Jpn 33(5):797–800Google Scholar
  275. Kumar P, Kind R, Hanka W, Wylegalla K, Reigber Ch, Yuan X, Woelbern I, Schwintzer P, Fleming K, Dahl-Jensen T, Larsen TB, Schweitzer J, Priestley K, Gudmundsson O, Wolf D (2005) The lithosphere–asthenosphere boundary in the North-West Atlantic region. Earth Plan Sci Lett 236:249–257Google Scholar
  276. Kurepin VA (1975) Activity of components, thermodynamic characteristics of reactions and phase equilibrium in system Fe–O by high temperature and pressure. Geochemistry (Geokhimiya) 10:1475–1483 (in Russian)Google Scholar
  277. Kutas RI (1978) Field of heat flows and thermal model of earth crust. Naukova Dumka, Kiev (in Russian)Google Scholar
  278. Kutas RI, Kobolev VP, Tsvyashchenko VA (1998) Heat flow and geothermal model of the Black Sea depression. Tectonophysics 291:91–100Google Scholar
  279. Labrosse S, Hernlund JW, Coltice N (2007) A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450:866–869Google Scholar
  280. Lambert DD, Foster JG, Frick LR, Ripley EM, Zientek ML (1998) Geodynamics of magmatic Cu-Ni-PGE deposits: new insights from the Re-Os isotope system. Econ Geol 93:121–136Google Scholar
  281. Landes M, Hauser F, Popa M (2002) 3-D crustal velocity structure across the Vrancea Zone in Romania, derived from seismic data. In: Transactions of the AGU fall meeting, abstract #S62D-07Google Scholar
  282. Lange RA (1997) A revised model for the density and thermal expansivity of K2O–Na2O–CaO–MgO–Al2O3–SiO2 liquids from 700 to 1900 K: extension to crustal magmatic temperatures. Contrib Miner Petrol 130:1–11Google Scholar
  283. Lange RA, Carmichael ISE (1987) Densities of Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–TiO2–SiO2 liquids: new measurements and derived partial molar properties. Geochim et Cosmochim Acta 51:2931–2946Google Scholar
  284. Lee CA, Brandon AD, Norman M (2003) Vanadium in peridotites as a proxy for paleo-fO2 during partial melting: Prospects, limitations, and implications. Geochim et Cosmochim Acta 67(16):3045–3064Google Scholar
  285. Leech ML, Stockli DF (2000) The late exhumation history of the ultrahighpressure Maksyutov Complex, south Ural Mountains, from new apatite fission track data. Tectonics 19:153–167Google Scholar
  286. Lehrnann I (1961) S and the structure of the upper mantle. Geophys J Roy Astron Soc 4:124–138Google Scholar
  287. Lepland A, Van Zuilen MA, Phillippot P (2011) Fluid-deposited graphite and its geobiological implications in early Archean gneiss from Akilia, Greenland. Geobiology 9(1):2–9Google Scholar
  288. Lerner-Lam A, Jordan T (1983) Earth structure from fundamental and higher-mode waveform analysis. Geophys J R Astron Soc 56:759–797Google Scholar
  289. Li C, Zhai Q, Dong Y, Liu Sh, Xie Ch, Wu Y (2009) High-pressure eclogite-blueschist metamorphic belt and closure of Paleo-Tethis ocean in Central Qingtang, Qinghai-Tibet plateau. J Earth Sci 20(2):209–218Google Scholar
  290. Li J, Agee CB (1996) Geochemistry of mantle-core differentiation at high pressure. Nature 381:686–689Google Scholar
  291. Liati A, Gebauer D, Fanning CM (2009) Geochronological evolution of HP metamorphic rocks of the Adula nappe, Central Alps, in pre-Alpine and Alpine subduction cycles. J Geol Soc 166(4):797–810Google Scholar
  292. Lide DR (ed) (2005) Handbook of chemistry and physics, 86th edn, CRC Press, Taylor & Francis, USGoogle Scholar
  293. Lillo TM, Delezene-Briggs KM (2005) Commercial alloys for sulfuric acid vaporization in thermochemical hydrogen cycles. In: Transactions of the AiChE 2005 annual meeting, pp 1–11Google Scholar
  294. Lindblom S, Broman S, Martinsson O (1996) Magmatic-hydrothermal fluids in the Pahtohavare Cu-Au deposit in greenstone at Kiruna, Sweden. Miner Deposita 31(4):307–318Google Scholar
  295. Lippard SJ (1983) Cretaceous high pressure metamorphism in NE Oman and its relationship to subduction and ophiolite nappe emplacement. J Geol Soc 140:97–104Google Scholar
  296. Liu J, Bohlen SR (1995) Mixing properties and stability of jadeite-acmite pyroxene in the presence of albite and quartz. Contrib Miner Petrol 119(4):433–440Google Scholar
  297. Lomize MG, Demina MI, Zarschikova AA (1997) Kirgizian-Terseyskiy paleo-ocean basin (Tien Shan). Geotectonics (Geotektonika) 6:35–55 (in Russian)Google Scholar
  298. Louie DK (1961) Handbook of sulfuric acid manufacturing. DKL Engineering Inc., Richmond HillGoogle Scholar
  299. Lowe DR (1994) Accretionary history of the Archean Barberton Greenstone Belt (3.55–3.22 Ga), southern Africa. Geology 22(12):1099–1102Google Scholar
  300. Lowe DR, Byerly GR (1999) Stratigraphy of the west-central part of the barberton greenstone belt, South Africa. In: Lowe DR, Byerly GR (eds) Geological evolution of the barberton greenstone belt. Geol Soc Am Spec Pap 329, pp 1–36Google Scholar
  301. Lowe DR, Worrell G (1999) Sedimentology, mineralogy, and implications of silicified evaporites in the Kromberg Formation, Barberton Greenstone Belt, South Africa. In: Lowe DR, Byerly GR (eds) Geologic evolution of the barberton greenstone belt, south Africa. Geol Soc Am Spec Pap 329, pp 167–188Google Scholar
  302. Lowrie A, Fillon RH (2011) Northern Gulf of Mexico continental margin deformation proposed to be by simple shear with regional basal horizon terminating under Yucatan. In: Transactions of the AAPG annual conference and exhibition. Houston, TexasGoogle Scholar
  303. Lubimova EA (1968a) Thermal history of the earth. In: The earth’s crust and upper mantle. Am Geophys Union Geophys Monogr Ser 13:63–77Google Scholar
  304. Lubimova EA, Mayeva SV (1982) Models of the thermal evolution of the Earth. Izv Acad Sci USSR Ser Geophys 6:8–93Google Scholar
  305. Luther GW III (1991) Pyrite synthesis via polysulfide compounds. Geochim et Cosmochim Acta 55:2839–2849Google Scholar
  306. Maden N (2009a) Curie-point depth from spectral analysis of magnetic data in Erciyes Stratovolcano (central Turkey). Pure Appl Geophys 167(3):349–358Google Scholar
  307. Maden N (2009b) Crustal thermal properties of the Central Pontides (Northern Turkey) deduced from spectral analysis of magnetic data, Turkish. J Earth Sci 18:383–392Google Scholar
  308. Mainprice D, Casey M, Schmid S (1990) The seismic properties of Alpine calcite and quartz mylonites determined from the orientation distribution function. In: Rouse F, Heitzmann P, Polino R (eds) Deep structure of the Alps. Mémoires Société Géologique de France, Paris, 156; Mémoires Société Géologique de la Suisse; Zürich, vol. spec. Memorie della Società Geoligica Italiana, Roma, pp 85–96Google Scholar
  309. Makarichev GI (1978) Geosyncline process and formation of the continental crust of the Tien Shan. Priroda, Moscow (in Russian)Google Scholar
  310. Makovsky Y, Klemperer SL, Ratschbacher L, Alsdorf D (1999) Midcrustal reflector on INDEPTH wide angle profiles: an ophiolitic slab beneath the India-Asia suture in southern Tibet? Tectonics 18:793–808Google Scholar
  311. Malatesta C, Gerya T, Scambelluri M, Federico L, Crispini L, Capponi G (2011) Serpentinite channel and the role of serpentinite buoyancy for exhumation of HP rocks (Voltri Massif, Western Alps). Goldschmidt conference abstracts, 1393Google Scholar
  312. Malyshev AI (2004) Sulfur in magmatic ore formation. In: The urals branch of the Russian academy of sciences, Ekaterinburg (in Russian)Google Scholar
  313. Manea M, Manea VC (2011) Curie Point depth estimates and correlation with flat-slab subduction in Mexico. Geophys Res Abst EGU Gen Ass, vol 13, EGU2011-6995Google Scholar
  314. Manning CE, Bohlen SR (1991) The reaction titanite + kyanite = anorthite + rutile and titanite-rutile barometry in eclogites. Contrib Miner Petrol 109:1–9Google Scholar
  315. Mao Z, Jacobsen SD, Jiang F, Smyth JR, Holl CM, Frost DJ, Duffy TS (2010) Velocity crossover between hydrous and anhydrous forsterite at high pressures. Earth Plan Sci Lett 293:250–258Google Scholar
  316. Marschik R, Fontboté L (2001) The Candelaria-Punta del Cobre iron oxide (Cu-Au-Zn-Ag) deposits, Chile. Econ Geol 96:1799–1826Google Scholar
  317. Martienssen W, Warlimont H (eds) (2005) Handbook of condensed matter and materials data, vol 1. Springer, BerlinGoogle Scholar
  318. Marty B, Meibom A (2007) Noble gas signature of the Late Heavy Bombardment in the Earth’s atmosphere. eEarth 2:43–49Google Scholar
  319. Masson H, Bussy F, Eichenberger M, Giroud N, Meilhac C, Presniakov S (2008) Early Carboniferous age of the Versoyen ophiolites and consequences: non-existence of a “Valais ocean” (Lower Penninic, western Alps), vol 179(4). Bull de la Soc Geologique de France, pp 337–355Google Scholar
  320. Massone HJ, Schreyer W (1987) Phengite geobarometry based on the limiting assemblage with K-feldspar, phlogopite and quartz. Contrib Mineral Petrol 96:212–224Google Scholar
  321. Mattisson T, Lyngfelt A (1999) The reaction between limestone and SO2 under periodically changing oxidizing and reducing conditions - Effect of temperature and limestone type. Thermochim Acta 325(1):59–67Google Scholar
  322. Mazo-Zuluaga J, Barrero CA, Díaz-Terán J, Jerez A (2003) Thermally induced magnetite–haematite transformation. Hyperfine Interact 148–149:153–160Google Scholar
  323. McMullen J, Thomas KG (2002) Gold roasting, autoclaving or bio-oxidation process selection dased on bench-scale and plant test work and costs. In: Mular AL, Halbe DN, Barratt DJ (eds) Mineral processing plant design, practice, and control proceedings, vol. 1, pp 211–250Google Scholar
  324. Medaris G Jr, Ducea M, Ghent E, Iancu V (2003) Conditions and timing of high-pressure Variscan metamorphism in the South Carpathians, Romania. Lithos 70:141–161Google Scholar
  325. Melcher F, Meisel T, Puhl J, Koller F (2002) Petrogenesis and geotectonic setting of ultramafic rocks in the Eastern Alps: constraints from geochemistry. Lithos 65(1–2):69–112Google Scholar
  326. Melosh HJ (1990) Giant impacts and the thermal state of the early Earth. In: Jones J (ed) Origin of the Earth. Oxford University Press, Oxford, pp 69–83Google Scholar
  327. Michard A, Chopin C, Henry C (1993) Compression versus extension in the exhumation of the Dora-Maira coesite-bearing unit, Western Alps, Italy. Tectonophysics 221:173–193Google Scholar
  328. Mikolaichuk AV, Apayarov FKh, Buchroithner MF Chernavskaja ZI, Skrinnik LI, Ghes MD, Neyevin AV, Charimov TA (2008) Geological map of Khan Tengri Massif explanatory note. ISTC Project No. #KR-920, BishkekGoogle Scholar
  329. Milanovsky YeYe (1968) Newest geotectonics of the Caucasus. Nauka, Moscow (in Russian)Google Scholar
  330. Miller Ch, Thöni M (1995) Origin of eclogites from the Austroalpine Ötztal basement (Tirol, Austria): geochemistry and Sm-Nd versus Rb-Sr isotope systematics. Chem Geology 122:199–225Google Scholar
  331. Misra MK, Ragland KW, Baker AJ (1993) Wood ash composition as a function of furnace temperature. Biomass Bioenergy 4(2):103–116Google Scholar
  332. Mojzsis S (2009) Geology of 3830 Ma ferruginous quartz-pyroxene (supracrustal) rocks from the Akilia association, southern West Greenland. In: 2009 portland GSA annual meeting. Geological society of America abstracts with programs,vol 41(7), p 394Google Scholar
  333. Möller A, O’Brien PJ, Kennedy A, Kröner A (2002) Polyphase zircon in ultrahigh-temperature granulites (Rogaland, SW Norway): constraints for Pb diffusion in zircon. J Metamorp Geol 20(8):727–740Google Scholar
  334. Moores EM (2002) Pre-1 Ga (pre-Rodinian) ophiolites: their tectonic and environmental implications. Geol Soc Am Bull 114:80–95Google Scholar
  335. Morey GW, Chen WT (1955) The action of hot water on some feldspars. Am Mineral 40:996–1000Google Scholar
  336. Mukasa SB, Shervais JW (1999) Growth of subcontinental lithosphere: evidence from repeated dike injections in the Balmuccia lherzolite massif, Italian Alps. Lithos 48:287–316Google Scholar
  337. Mukhopadhyay M, Krishna MR (1991) Gravity field and deep structure of the Bengal Fan and its surrounding continental margins, northeast Indian Ocean. Tectonophysics 186:365–386Google Scholar
  338. Müller RD, Hillis RR (eds) (2003) Evolution and dynamics of the Australian plate (special papers 372). Geol Soc AmGoogle Scholar
  339. Myers J, Eugster HP (1983) The system Fe-Si-O: Oxygen buffer calibrations to 1,500 K. Contrib Miner Petrol 82:75–90Google Scholar
  340. Myers JS (2004) Isua enigmas: illusive tectonics, sedimentary, volcanic and organic features of the >3.7 Ga Isua greenstone belt, Southwest Greenland. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The precambrian Earth: tempos and events. Developments in precambrian geology, vol 12, Condie KC (series ed), Elsevier, Amsterdam, pp 66–74Google Scholar
  341. Myers JS, Crowley JL (2000) Vestiges of life in the oldest Greenland rocks? A review of early Archean geology in the Godthåbsfjord region, and reappraisal of field evidence for >3,850 Ma life on Akilia. Precambr Res 103(3–4):101–124Google Scholar
  342. Mysen BO, Boettcher AL (1975) Melting of a hydrous mantle: I. Phase relations of natural peridotite at high pressures and temperatures with controlled activities of water, carbon dioxide, and hydrogen. J Petrol 16(3):520–548Google Scholar
  343. Nagatha T (1961) Rock magnetism. Maruzen Co., TokyoGoogle Scholar
  344. Nakamura D, Banno S (1997) Thermodynamic modelling of sodic pyroxene solid-solution and its application in a garnet-omphacite-kyanite-coesite geothermobarometer for UHP metamorphic rocks. Contrib Miner Petrol 130:93–102Google Scholar
  345. Nakamura K, Kato Y (2002) Carbonate minerals in the Warrawoona Group, Pilbara Craton: Implications for continental crust, life, and global carbon cycle in the Early Archean. Resour Geol 52(2):91–100Google Scholar
  346. Nalivkina AB (1978) Archean ophiolite association: on example of Ukraine. Soviet Geol 3:93–102 (in Russian)Google Scholar
  347. Nalivkina AB (1979) Early proterozoic ophiolite association: on example of Ukraine). Sov Geol 2:112–120 (in Russian)Google Scholar
  348. Naraoka H, Ohtake M, Maruyama S, Ohmoto H (1996) Non-biogenic graphite in 3.8-Ga metamorphic rocks from the Isua district, Greenland. Chem Geol 133(1–4):251–260Google Scholar
  349. Nathenson M, Guffanti M (1988) Geothermal gradients in the conterminous United States. J Geophys Res 93(B6):6437–6450Google Scholar
  350. Newton MS, Kennedy GC (1968) Jadeite, analcite, nepheline, and albite at high temperatures and pressures. Am J Sci 266:728–735Google Scholar
  351. Nichols G (1999) Sedimentology and stratigraphy. Wiley-Blackwell, MaldenGoogle Scholar
  352. Nicolas A, Boudier F, Ildefonse B, Ball E (2000) Accretion of Oman and United Arab Emirates Ophiolite – Discussion of a new structural map. Mar Geophys Resear 21:147–179Google Scholar
  353. Nicolas A, Boudier F, Meshi A (1999) Slow spreading accretion and mantle denudation in the Mirdita optiolite (Albania). J Geophys Res 104(B7):15155–15167Google Scholar
  354. Nikishin AM, Ziegler PA, Bolotov SN, Fokin PA (2011) Late Palaeozoic to Cenozoic evolution of the Black Sea-Southern Eastern Europe region: a view from the Russian platform, Turkish. J Earth Sci 20:1–64Google Scholar
  355. Ninomiya Y, Zhang L, Nagashima T, Koketsu J, Sato A (2004) Combustion and De–SOx behavior of high-sulfur coals added with calcium acetate produced from biomass pyroligneous acid. Fuel 83(16):2123–2131Google Scholar
  356. Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409:1083–1091Google Scholar
  357. Nishihara Y, Takahashi E, Matsukage K, Kikegawa T (2003) Thermal equation of state of omphacite. Am Mineral 88:80–86Google Scholar
  358. Nishitani T, Kono M (1983) Curie temperature and lattice constant of oxidized titanomagnetite. Geophys J R Astron Soc 74:585–600Google Scholar
  359. Nutman AP (2006) Antiquity of the oceans and continents. Elements 2(4):223–227Google Scholar
  360. Nwankwo LI, Olasehinde PI, Akoshile CO (2009) An attempt to estimate the Curie-point isotherm depths in the Nupe Basin, West Central Nigeria. Glob J Pure Appl Sci 15(3–4):427–234Google Scholar
  361. O’Brien PJ (1991) Fe rich olivine development during breakdown of eclogite, gt clinopyroxenite and gt websterite from the Variscan basement of NE Bavaria, Germany. In: International eclogite conference and 2nd eclogite field symposium, Granada, Malaga, Spain, Terra Abstracts suppl. 6 to Terra Nova, 3, pp 8–9Google Scholar
  362. O’Hanley DS (1996) Serpentinites. Records of tectonic and petrological history. Oxford University Press, OxfordGoogle Scholar
  363. O’Neill B, Bass JD, Rossman GR, Geiger CA, Langer K (1991) Elastic properties of pyrope. Phys Chem Miner 17:617–621Google Scholar
  364. O’Reilly SY, Griffin WL (2010) The continental lithosphere–asthenosphere boundary: can we sample it? Lithos 120:1–13Google Scholar
  365. Ohmoto H, Watanabe Y, Ikemi H (2005) The absence of mass independent fractionation of sulfur isotopes in Archean sedimentary rocks; an insignificant phenomenon? Geochim et Cosmochim Acta 69(10):A450Google Scholar
  366. Ohmoto H, Watanabe Y, Ikemi H, Poulson SR, Taylor BE (2006) Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 442:908–911Google Scholar
  367. Okamoto K, Maruyama S (1999) The high-pressure synthesis of lawsonite in the MORB + H2O system. Am Mineral 84:362–373Google Scholar
  368. Okay AI (1989) An exotic eclogite/blueschist slice in a barrovian style metamorphic terrain, Alanya Nappes, Southern Turkey. J Petrol 30(1):107–132Google Scholar
  369. Okay AI, Whitney DL (2010) Blueschists, eclogites, ophiolites and suture zones in Northwest Turkey: a review and a field excursion guide. Ofioliti 35(2):131–172Google Scholar
  370. Okubo Y, Graf RJ, Hansent RO, Ogawa K, Tsu H (1985) Curie point depths of the island of Kyushu and surrounding areas Japan. Geophysics 53:481–494Google Scholar
  371. Okubo Y, Matsunaga T (1994) Curie-point depth in northeast Japan and its correlation with regional thermal structure and seismicity. J Geophys Res Solid Earth 99(B11):22363–23371Google Scholar
  372. Önen AP, Hall R (2000) Sub-ophiolite metamorphic rocks from NW Anatolia, Turkey. J Metamor Geol 18:483–495Google Scholar
  373. Orberger B, Rouchon V, Westall F, de Vries ST, Pinti DL, Wagner Ch, Wirth R, Hashizume K (2006) Microfacies and origin of some Archean cherts (Pilbara, Australia). In: Reimond WU, Gibson RL (eds) Processes on the early Earth. Geol Soc Am Spec Pap 405, pp 133–156Google Scholar
  374. Pallister JS, Stacey JS, Fischer LB, Premo WR (1988) Precambrian ophiolites of Arabia: geologic setting, U—Pb geochronology, Pb—isotope characteristics, and implications for continental accretion. Precambr Res 38:1–54Google Scholar
  375. Palmqvist AEC, Zwinkels MFM, Zang Y, Järås SG, Muhammed M (1997) Reduction of sulfur dioxide by carbon monoxide over doped nanophase cerium oxides. Nanostruct Naterials 8(7):801–813Google Scholar
  376. Papineau D, DeGregorio BT, Cody GD, Fries MD, Mojzsis SJ, Steele A, Stroud RM, Fogel ML (2010) Ancient graphite in the Eoarchean quartz-pyroxene rock from Akilia in southwest Greenland I: petrographic and spectroscopic characterization. Geochim et Cosmochim Acta 74:5862–5883Google Scholar
  377. Passier HF, de Lange GJ, Dekkers MJ (2001) Magnetic properties and geochemistry of the active oxidation front and the youngest sapropel in the eastern Mediterranean Sea. Geophys J Int 145(3):604–614Google Scholar
  378. Patrick BE, Evans BW (1989) Metamorphic evolution of the Seward Peninsula Blueschist terrane. J Petrol 30(3):531–555Google Scholar
  379. Pavese A, Diella V, Pischedda V, Merli M, Bocchio R, Mezouar M (2001) Pressure-volume-temperature equation of state of andradite and grossular, by high-pressure and -temperature powder diffraction. Phys Chem Miner 28(4):242–248Google Scholar
  380. Pavlenkova GA, Pavlenkova NI (2003) 3-D velocity model of the upper mantle in the northern Eurasia. In: Proceedings of the European geophysical society, geophysical research abstract, vol 5, No. 02666Google Scholar
  381. Pavlenkova GA, Priestley K, Cipar J (2002) 2D model of the crust and uppermost mantle along rift profile, Siberian craton. Tectonophysics 355(1–4):171–186Google Scholar
  382. Pavlenkova NI (1995) On a regional seismic boundary in the uppermost mantle. Izv Russ Acad Sci Phys Solid Earth 31(12):58–71Google Scholar
  383. Pavlenkova NI (1996) General features of the uppermost mantle stratification from long-range seismic profiles. Tectonophysics 264(1–4):261–278Google Scholar
  384. Pavlenkova NI (2006) Long-range profile data on the upper-mantle structure in the Siberian Platform. Russ Geol Geophys 47(5):626–641Google Scholar
  385. Pavlenkova NI (2009). Continental and oceanic lithosphere structure from the long-range seismic profiling. In: Anderson JE, Coates RW (eds) The lithosphere: geochemistry, geology and geophysics. Nova Science Publishers, New York, pp 69–122Google Scholar
  386. Pearson DG, Canil D, Shirey SB (2003) Mantle samples included in volcanic rocks: xenoliths and diamonds. In: Carlson RW (ed) Treatise on geochemistry, vol 2, the Mantle. Elsevier, New York, pp 171–277Google Scholar
  387. Pechersky DM, Bagin VI, Brodskaya SYu, Sharonov ZV (1975) Magnetism and conditions of generation for igneous mountainous rocks. Nauka, Moscow (in Russian)Google Scholar
  388. Peltonen P, Kontinen A, Huhma H (1996) Petrology and geochemistry of metabasalts from the 1.95 Ga Jormua ophiolite, northeastern Finland. J Petrol 376:1359–1383Google Scholar
  389. Perchuk A, Philippot P, Erdmer Ph, Fialin M (1999) Rates of thermal equilibration at the onset of subduction deduced from diffusion modeling of eclogitic garnets, Yukon-Tanana terrane, Canada. Geology 27:531–534Google Scholar
  390. Perkins D III (1983) The stability of Mg-rich garnet in the system CaO-MgO-Al2O3-SiO2 at 1000–1300 °C and high pressure. Am Mineral 68:355–364Google Scholar
  391. Perry GJ, Gray A, Mackay GH (1985) Carbonate formation during hydrogenation of Victorian brown coal. Fuel Process Technol 10(3):285–297Google Scholar
  392. Philippot P, Blichert-Toft J, Perchuk A, Costa S, Gerasimov V (2001) Lu–Hf and Ar–Ar chronometry supports extreme rate of subduction zone metamorphism deduced from geospeedometry. Tectonophysics 342(1–2):23–38Google Scholar
  393. Phillips GN, Groves DI, Martyn JE (1984) An epigenetic origin for Archaean banded iron-formation-hosted gold deposits. Econ Geol 79:162–171Google Scholar
  394. Philpotts AR (1990) Principles of igneous and metamorphic petrology. Prentice Hall, Upper Saddle RiverGoogle Scholar
  395. Pilchin A (1983) Geothermal regime of Earth’s crust of the Kura depression and its influence on pressure distribution in it. PhD thesis, Institute of Geophysics of the Georgia Academy of Sciences, Tbilisi (in Russian)Google Scholar
  396. Pilchin A, Eppelbaum L (2012) The early Earth formation and evolution of the lithosphere in the Hadean–Middle Archean. In: Sato F, Nakamura Sh (eds) Encyclopedia of Earth science research, vol 1. pp 1–93 (Chapter 1)Google Scholar
  397. Pilchin AN (1978a) Correction to hydrostatic pressure in the crust of the Middle Kura depression. In: Geophysical researches of the oil, gas and ore deposits in Azerbaijan, Baku, pp 78–80 (in Russian)Google Scholar
  398. Pilchin AN (1978b) Estimation of thermodynamic condition of intervals of terrigenous transsection by speead of change of geothermal gradient with depth. Explor Geophys (Razvedochnaya Geofizika) 83:112–116Google Scholar
  399. Pilchin AN (1985a) Method of the stresses in a mountain massif determination, USSR, Patent No. 1,170,143, Bulletin of inventions, No. 28 (in Russian)Google Scholar
  400. Pilchin AN (1986) On the role of pressures in tectonic processes. VINITI Press, No. 3723-86, pp 1–23 (in Russian)Google Scholar
  401. Pilchin AN (1987b) The origin of ultra high pressures generation in the oceans earth crust and upper mantle. In: Transaction of the 1st All-Union meeting on marine geophysics, Baku, p 31 (in Russian)Google Scholar
  402. Pilchin AN (1996a) Tectonic and petrologic peculiarities of the Grenville province formation. In: Transactions of geological association of Canada and mineral association of Canada annual meeting, vol 21, p A-75Google Scholar
  403. Pilchin AN (1996b) Tectonic and petrologic peculiarities of the Precambrian evolution of the Baltic shield. Extended abstracts book, 58th EAGE conference and technical exhibition, Amsterdam, p P-513Google Scholar
  404. Pilchin AN (2005) The role of serpentinization in exhumation of high- to ultra-high-pressure metamorphic rocks. Earth Plan Sci Lett 237(3–4):815–828Google Scholar
  405. Pilchin AN (2011) Magnetite: the story of the mineral′s formation and stability. In: Angrove DM (ed) Magnetite: structure, properties and applications. Nova Science Publishers, New York, pp 1–99 (Chapter 1)Google Scholar
  406. Pilchin AN, Eppelbaum LV (1997) Determination of the lower edges of magnetized bodies by using geothermal data. Geophys J Int 128:167–174Google Scholar
  407. Pilchin AN, Eppelbaum LV (2002) Some peculiarities of thermodynamic conditions of the Earth crust and upper mantle. Sci Isr 4(1–2):117–142Google Scholar
  408. Pilchin AN, Eppelbaum LV (2004) On the stability of ferrous and ferric iron oxides and its role in rocks and rock-forming minerals stability. Sci Isr 6(3–4):119–135Google Scholar
  409. Pilchin AN, Eppelbaum LV (2005) On the role of thermodynamic conditions in rocks and minerals stability. Sci Isr 7(1–2):88–105Google Scholar
  410. Pilchin AN, Eppelbaum LV (2006) Iron and its unique role in earth evolution, vol 9. Mexican Geophysics Society, pp 1–67 Google Scholar
  411. Pilchin AN, Eppelbaum LV (2007) Stability of iron oxides in the Earth and their role in the formation of rock magnetism. Acta Geofisica 55(2):133–153Google Scholar
  412. Pilchin AN, Eppelbaum LV (2008a) Iron content of magmatic rocks as a marker of mantle heterogeneity. Transactions of the 33rd international geological conference, Oslo, Norway, EID05421PGoogle Scholar
  413. Pilchin AN, Eppelbaum LV (2008b) Some causes of initial mantle heterogeneity. In: Transactions of the 33rd international geological conference, Oslo, Norway, EID05422PGoogle Scholar
  414. Pilchin AN, Eppelbaum LV (2009) The early Earth and formation of the lithosphere. In: Anderson JE, Coates RW (eds) The lithosphere: geochemistry, geology and geophysics. Nova Science Publishers, New York, pp 1–68 (Chapter 1)Google Scholar
  415. Pilchin AN, Khesin BE (1981) On possible nature of the magnitoactive bodies of bottom edges. Explor Geophys (Razvedochnaya Geofizika) 92:123–127 (in Russian)Google Scholar
  416. Pilchin MM, Pilchin AN (1996) Petrology and some peculiarities of mineral composition of the early Precambrian rocks of Canadian shield. In: Transaction of geological associationof Canada and mineral. Association of Canada annual meeting, vol 21, p A-75Google Scholar
  417. Pinti DL, Mineau R, Clement V (2009) Hydrothermal alteration and microfossil artefacts of the 3,465-million-year-old Apex chert. Nat Geosci 2:640–643Google Scholar
  418. Pirajno F (2010) Hydrothermal processes and mineral systems. Springer, BerlinGoogle Scholar
  419. Polino R, Dal Piaz GV, Gosso G (1990) Tectonic evolution at the Adria margin and accretionaly processes for the Cretaceous orogeny in the Alps. In: Roure F, Heitzmann P, Polino R (eds) Deep Structure of the Alps. Mémoires Société Géologique de France, Paris, 156; Mémoires Société Géologique de la Suisse; Zürich, Memorie della Società Geoligica Italiana, Roma, pp 345–367Google Scholar
  420. Pollack HN (1997) Thermal characteristics of the Archaean. In: de Wit MJ, Ashwal MD (eds) Greenstone belts. Clarendon Press, Oxford, pp 223–232Google Scholar
  421. Pollard DD, Fletcher RC (2005) Fundamentals of structural geology. Cambridge University Press, CambridgeGoogle Scholar
  422. Post RL (1977) High-temperature creep of Mt. Barnet Dunite. Tectonophysics 42(2):75–110Google Scholar
  423. Prewitt CT, Sueno S, Papike JJ (1976) The crystal structures of high albite and monalbite at high temperatures. Am Mineral 61:1213–1225Google Scholar
  424. Prothero DR, Schwab F (1996) Sedimentary geology: an introduction to sedimentary rocks and stratigraphy. Freeman, W. HGoogle Scholar
  425. Pugin VA, Khitarov NI (1978) Eclogites as source of quartz-normative magmas. Geochemistry (Geokhimia) 10:1506–1512Google Scholar
  426. Qingqing Q, Qingsheng L, Ning Q, Yuanyuan F, Sutao Z, Yao Q, Tao Y, Zhenmin J (2008) Investigation of curie point depth in sulu ultrahigh-pressure metamorphic belt, eastern China. J China Univ Geosci 19(3):282–291Google Scholar
  427. Rao YK (1974) A physical-chemical model for reactions between particulate solids occurring through gaseous intermediates—1. Reduction of hematite by carbon. Chem Eng Sci 29:1435–1445Google Scholar
  428. Redl FX, Black CT, Papaefthymiou GC, Sandstrom RL, Yin M, Zeng H, Murray ChB, O’Brien SP (2004) Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale. J Am Chem Soc 126:14583–14599Google Scholar
  429. Reinecke T (1986) Crystal chemistry and reaction relations of piemontites and thulites from highly oxidized low grade metamorphic rocks at Vitali, Andros Island, Greece. Contrib Mineral Petrol 93:56–76Google Scholar
  430. Righter K, Drake MJ (1997a) A magma ocean on Vesta: Core formation and petrogenesis of eucrites and diogenites. Met Planet Sci 32:929–944Google Scholar
  431. Righter K, Drake MJ (1997b) Metal-silicate equilibrium in a homogeneously accreting earth: new results for Re. Earth Plan Sci Lett 146(3–4):541–553Google Scholar
  432. Ring U (1992a) The Alpine geodynamic evolution of Penninic nappes in the eastern Central Alps: geothermobarometric and kinematic data. J Metamorphic Geol 10:33–53Google Scholar
  433. Ring U (1992b) The kinematic history of the Penninic napes east of the Lepontine dome: implications for the tectonic evolution of the central Alps. Tectonics 11(6):1139–1158Google Scholar
  434. Rivers T, Martignole J, Gower C, Davidson A (1989) New tectonic divisions of the Grenville province, southeast Canadian shield. Tectonics 8(1):63–84Google Scholar
  435. Romano D, Holm DK, Foland KA (2000) Determining the extent and nature of Mazatzal-related overprinting of the Penokean orogenic belt in the southern Lake Superior region, north-central USA. Precambr Res 104:25–46Google Scholar
  436. Ross HE, Blakely RJ, Zoback MD (2006) Testing the use of aeromagnetic data for the determination of Curie depth in California. Geophysics 71(5):L51–L59Google Scholar
  437. Rouchon V, Orberger B, Hofmann A, Pinti DL (2009) Diagenetic Fe-carbonates in Paleoarchean felsic sedimentary rocks (Hooggenoeg Formation, Barberton greenstone belt, South Africa): Implications for CO2 sequestration and the chemical budget of seawater. Precambr Res 172:255–278Google Scholar
  438. Rudnick RL (1997) Thermal structure of Archean cratons: a new look at conductive geotherms and xenolith P–T arrays. In: Proceedings of the 7th annual V.M. Goldschmidt conference, No. 2281Google Scholar
  439. Rybach L, Werner D, Mueller S, Berset G (1977) Heat flow, heat production and crustal dynamics in the Central Alps, Switzerland. Tectonophysics 41:113–126Google Scholar
  440. Rychert CA, Shearer PM (2009) A global view of the lithosphere-asthenosphere boundary. Science 324(5926):495–498Google Scholar
  441. Rye R, Holland HD (1998) Paleosols and the evolution of atmospheric oxygen: a critical review. Am J Sci 298:621–672Google Scholar
  442. Safronov VS (1978) The heating of the earth during its formation. Icarus 33(1):3–12Google Scholar
  443. Saleeby J (1982) Polygenetic ophiolite belt of the California Sierra Nevada: Geochronological and tectonostratigraphic development. J Geophys Res 87(B3):1803–1824Google Scholar
  444. Salem A, Ushijima K, Elsirafi A, Mizunaga H (2000) Spectral analysis of aeromagnetic data for geothermal reconnaissance of Quseir area, Northern Red Sea, Egypt. In: Proceedings of the world geothermal congress, Kyushu-Tohoku, Japan, pp 1669–1674Google Scholar
  445. Sandiford M, Dymoke P (1991) Some remarks on the stability of blueschists and related high P-low T assemblages in continental orogens. EarthPlan Sci Lett 102:14–23Google Scholar
  446. Savelieva GN, Denisova EA (1983) Structure and petrology of ultrabasit Nuraly massif of the Soutern Urals. Geotectonics (Geotektonika) 2:42–57 (in Russian)Google Scholar
  447. Schmädicke E, Müller WF (2000) Unusual exsolution phenomena in omphacite and partial replacement of phengite by phlogopite + kyanite in an eclogite from the Erzgebirge. Contrib Miner Petrol 139(6):629–642Google Scholar
  448. Schmid SM, Aebli HR, Heller F, Zingg A (1989) The role of the Periadriatic Line in the tectonic evolution of the Alps. Geol Soc Spec Publ Lond 45:153–171Google Scholar
  449. Schmidt MW, Poli S, Comodi P, Zanazzi PF (1997) High-pressure behavior of kyanite: decomposition of kyanite into stishovite and corundum. Am Mineral 82:460–466Google Scholar
  450. Schubert G, Turcotte DL, Olson P (2001) Mantle convection in the earth and planets, 2 volume set. Cambridge University Press, CambridgeGoogle Scholar
  451. Schulte B, Sindern S (2002) K-rich fluid metasomatism at high-pressure metamorphic conditions: Lawsonite decomposition in rodingitized ultramafite of the Maksyutovo Complex, Southern Urals (Russia). J Metamorp Geol 20:529–542Google Scholar
  452. Schulz B, Triboulet C, Audren C, Pfeifer H-R, Gilg A (2001) Two-stage prograde and retrograde Variscan metamorphism of glaucophane-eclogites, blueschists and greenschists from Ile de Groix (Brittany, France). Int J Earth Sci 90(4):871–889Google Scholar
  453. Scott HP, Hemley RJ, Mao H, Herschbach DR, Fried LE, Howard WM, Bastea S (2004) Generation of methane in the Earth’s mantle: in situ high pressure–temperature measurements of carbonate reduction. In: Proceedings of the national acadamic science, USA, vol 101(39), pp 14023–14026Google Scholar
  454. Searle M, Cox J (1999) Tectonic setting, origin, and obduction of the Oman ophiolite. GSA Bull 111(1):104–122Google Scholar
  455. Seiff A, Shofield JT, Kliore AJ, Taylor FW, Limaye SS, Revercomb HE, Sromovsky LA, Kerzhanovich VI, Moroz VI, Marov MY (1986) Models of the structure of the atmosphere of Venus from the surface to 100 km altitude. In: Kliore AJ, Moroz VI, Keating GM (eds) The venus international reference atmosphere. Pergamon, Oxford, pp 3–58Google Scholar
  456. Selverstone J (1985) Petrologic constants on imbrication, metamorphism, and uplift in the SW Tauern Window, Eastern Alps. Tectonics 4:687–704Google Scholar
  457. Selverstone J (1988) Evidence for east-west crustal extension in the eastern Alps: implications for the unroofing history of the Tauern window. Tectonics 7(1):87–105Google Scholar
  458. Selvig LK, Inn KGW, Outola IMJ, Kurosaki H, Lee KA (2005) Dissolution of resistate minerals containing uranium and thorium: Environmental implications. J Radioanal Nucl Chem 263(2):341–348Google Scholar
  459. Şengün F, Yığıtbaş E, Tunҫ İO (2011) Geology and tectonic emplacement of eclogite and blueschists, Biga Peninsula, Northwest Turkey, Turkish. J Earth Sci 20:273–285Google Scholar
  460. Sharma SR, Rao VK, Mall DM, Gowd TN (2005) Geothermal structure in a seismoactive region of central India. Pure Appl Geophys 162(1):129–144Google Scholar
  461. Sharma T, Clayton RN (1965) Measurement of 0-18/0-16 ratios of total oxygen of carbonates. Geochim et Cosmochim Acta 29:1347–1353Google Scholar
  462. Sharp ZD, Papike JJ, Durakiewicz T (2003) The effect of thermal decarbonation on stable isotope compositions of carbonates. Am Mineral 88(1):87–92Google Scholar
  463. Sherman DM (1989) The nature of the pressure induced metallization of FeO and its implications to the core–mantle boundary. Geophys Res Lett 16(6):515–518Google Scholar
  464. Shervais JW (2006) Significance of subduction-related accretionary complexes in early Earth processes. In: Reimold U, Gibson R (eds) Early earth processes, Geol Soc Am Spec Pap 405, pp 173–192Google Scholar
  465. Shin DY, Kim KN, Nam I-T, Han SM (2006) Improvement of corrosion resistance of stainless steel by ZrO2–SiO2 Sol-gel coatings. In: Kim HS, Li YB, Lee SW (eds) Eco-materials processing & design VII, materials science forum, vol 510–511, pp 442–445Google Scholar
  466. Shiraishi Y, Ikeda K, Tamura A, Saito T (1978) On the viscosity and density of the molten FeO-SiO2 system. Trans Jpn Inst Metal 19:264–274Google Scholar
  467. Shuey RT, Schellinger DK, Tripp AC, Alley LB (1977) Curie depth determination from aeromagnetic spectra. Geophys. J Roy Astron Soc 50:75–101Google Scholar
  468. Shumlyanska L, Tsvetkova T, Bugaenko I, Zayets L (2006) 3-D velocity model of the upper mantle of the south-western part of the east-European platform. Geophys Res Abstr 8:00762Google Scholar
  469. Singh RN, Negi JG (1982) High Moho temperature in the Indian shield. Tectonophysics 82(3–4):299–306Google Scholar
  470. Skelton ADL, Valley JW (2000) The relative timing of serpentinisation and mantle exhumation at the ocean-continent transition, Iberia: constraints from oxygen isotopes. Earth Plan Sci Lett 178:327–338Google Scholar
  471. Skinner BJ (1966) Thermal expansion. In: Clark SP Jr. (ed) Handbook of physical constants, Geol Sot Am Mem, pp 75–95Google Scholar
  472. Sleep NH (2010) The Hadean-Archaean environment. Cold Spring Harb Perspect Biol 2(6):a002527Google Scholar
  473. Smith DC (1984) Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature 310:641–644Google Scholar
  474. Smith DC, Lappin MA (1989) Coesite in the Straumen kyanite-eclogite pod, Norway. Terra Nova 1:47–56Google Scholar
  475. Sobolev VS (ed) (1972) The facies of metamorphism. Nedra, Moscow (in Russian)Google Scholar
  476. Soga N (1967) Elastic constants of garnet under pressure and temperature. J Geophys Res 72:4227–4234Google Scholar
  477. Solomatov VS (2000) Fluid dynamics of a terrestrial magma ocean. In: Canup R, Righter K (eds) Origin of the Earth and Moon. University of Arizona Press, Tucson, pp 323–338Google Scholar
  478. Song M, Xie H, Zheng H, Xu Y, Guo J, Xu Z (1996) P-wave velocities of main upper mantle minerals at high temperature and high pressure and its geological implications. Sci China Ser D 39(1):93–100Google Scholar
  479. Spector A, Grant FS (1970) Statistical models for interpreting aeromagnetic data. Geophys 35:293–302Google Scholar
  480. Speight JG (2005) Lange’s handbook of chemistry, 16th edn. McGaw-Hill, New YorkGoogle Scholar
  481. Spencer C, Green A, Morel-à-l’Huissier P, Milkereit B, Luetgert J, Stewart D, Unger J, Phillips J (1989) The extension of Grenville basement beneath the northern Appalachians: Results from the Quebec-Maine reflection and refraction surveys. Tectonics 8(4):677–696Google Scholar
  482. Spohn T, Schubert G (1991) Thermal equilibration of the Earth following a giant impact. Geophys J Int 107:163–170Google Scholar
  483. Stampolidis A, Tsokas GN (2002) Curie point depths of Macedonia and Thrace, N Greece. Pure Appl Geophys 159:2659–2671Google Scholar
  484. Stevenson DJ (2008) A planetary perspective on the deep Earth. Nature 451:261–265Google Scholar
  485. Stiegler MT, Lowe DR, Byerly GR (2010) The Petrogenesis of Volcaniclastic Komatiites in the Barberton Greenstone Belt, South Africa: a textural and geochemical study. J Petrol 51(4):947–972Google Scholar
  486. Stoessell RK, Klimentidis RE, Prezbindowski DR (1987) Dedolomitization in Na–Ca–Cl brines from 100° to 200°C at 300 bars. Geochim et Cosmochim Acta 51(4):847–855Google Scholar
  487. Stovba SM, Maystrenko YuP, Stephenson RA, Kusznir NJ (2003) The formation of the south-eastern part of the Dniepr-Donets Basin: 2-D forward and reverse modelling taking into account post-rift redeposition of syn-rift salt. Sediment Geol 156:11–33Google Scholar
  488. Sugitani K, Mimura K, Suzuki K, Nagamine K, Sugisaki R (2003) Stratigraphy and sedimentary petrology of an Archean volcanic-sedimentary succession at Mt. Goldsworthy in the Pilbara Block, Western Australia: implications of evaporite (nahcolite) and barite deposition. Precambrian Res 120:55–79Google Scholar
  489. Sugitani K, Yamashita F, Nagaoka T, Minami M, Yamamoto K (2006b) Geochemistry of heavily altered Archean volcanic and volcaniclastic rocks of the Warrawoona Group, at Mt. Goldsworthy in the Pilbara Craton, Western Australia: implications for alteration and origin. Geochem J 40:523–535Google Scholar
  490. Sugitani K, Yamashita F, Nagaoka T, Yamamoto K, Minami M, Mimura K, Suzuki K (2006a) Geochemistry and sedimentary petrology of Archean clastic sedimentary rocks at Mt. Goldsworthy, Pilbara Craton, Western Australia: evidence for the early evolution of continental crust and hydrothermal alteration. Precambrian Res 147:124–147Google Scholar
  491. Sugiyama T (2010) Material design of sulfuric acid resistance material. In: Proceedings of Tokyo Tech—EPFL joint workshop, No. 09D06020Google Scholar
  492. Suzuki I, Anderson OL (1983) Elasticity and thermal expansion of a natural garnet up to 1,080 K. J Phys Earth 31:125–138Google Scholar
  493. Svetov SA, Smolkin VF (2003) Model P–T conditions of high-magnesia magma generation in the Precambrian of the fennoscandian shield. Geochem Int 41(8):799–811Google Scholar
  494. Tackley PJ (1998) Three dimensional simulations of mantle convection with a thermo-chemical basal boundary layer. In: Gurnis M, Wysession ME, Knittle E, Buffett BA (eds) The core-mantle boundary region. Geophysics union, geodynamics series, vol 28. Washington, DC., pp 231–253Google Scholar
  495. Tackley PJ (2000) Mantle convection and plate tectonics: toward an integrated physical and chemical theory. Science 288:2002–2007Google Scholar
  496. Takahashi E (1990) Speculations on the Archean mantle: missing link between komatiite and depleted garnet peridotite. J Geophys Res 95(B10):15941–15954Google Scholar
  497. Tanaka A, Okubo Y, Matsubayashi O (1999) Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics 306:461–470Google Scholar
  498. Tartaj P, Serna CJ, Moya JS, Requena J, Ocaña M, De Aza S, Guitian F (1996) The formation of zircon from amorphous ZrO2·SiO2 powders. J Mater Sci 31(22):6089–6094Google Scholar
  499. Terry MP, Robinson P, Krough Ravna EJ (2000) Kyanite eclogite thermobarometry and evidence for thrusting of UHP over HP metamorphic rocks, Nordøyane, Western Gneiss Region. Norway Am Mineral 85:1637–1650Google Scholar
  500. ThermExce (2003) http://www.thermexcel.com/english/tables/eau_boui.htm. Retrieved on 12 Nov 2013
  501. Theye T, Seidel E (1993) Uplift-related retrogression history of aragonite marbles in Western Crete (Greece). Contrib Mineral Petrol 114:349–356Google Scholar
  502. Thöni M (2002) Sm-Nd isotope systematics in garnet from different lithologies (Eastern Alps): age results, and an evaluation of potential problems for garnet Sm-Nd chronometry. Chem Geol 185:255–281Google Scholar
  503. Thouvenot F, Kashubin SN, Poupinet G, Makovskiy VV, Kashubina TV, Matte Ph, Jenatton L (1995) The root of the Urals: evidence from wide-angle reflection seismics. Tectonophysics 250(1–3):1–13Google Scholar
  504. Thury M, Gautschi A, Mazurek M, Müller WH, Naef H, Pearson FJ, Vomvoris S, Wilson W (1994) Geology and Hydrogeology of the crystalline basement of Northern Switzerland. Geologische Berichte—Rapports geplogiques, No. 18, BernGoogle Scholar
  505. Thybo H, Perchuc E (1997) The seismic 8 discontinuity and partial melting in the continental mantle. Science 275:1626–1629Google Scholar
  506. Togonbaeva A, Takasu A, Bakirov AA, Sakurai T, Tagiri M, Bakirov AB, Sakiev K (2009) CHIME monazite ages of garnet-chloritoid-talc schists in the Makbal Complex, Northern Kyrgyz Tien-Shan: first report of the age of the UHP metamorphism. J Mineral Petrol Sci 104(2):77–81Google Scholar
  507. Tokumitsu K, Nasu T (2000) Synthesis of nano-structured Fe/Fe3O4 complex particle by thermal decomposition of wustite. J Metastable Nanocryst Mater 8:562–567Google Scholar
  508. Tonks WB, Melosh HJ (1993) Magma ocean formation due to giant impacts. J Geophys Res 98:5319–5333Google Scholar
  509. Toulkeridis T, Goldstein SL, Clauer N, Kröner A, Lowe DR (1994) Sm-Nd dating of Fig Tree clay minerals of the Barberton greenstone belt, South Africa. Geology 22:199–202Google Scholar
  510. Treiman AH, Schwenzer SP (2009) Basalt–atmosphere interaction on Venus: Preliminary results on weathering of minerals and bulk rock. In: Transactions of workshop: venus geochemistry: progress, prospects, and new missions, No. 2011Google Scholar
  511. Trifonova P, Zhelev Zh, Petrova T (2007) Locations of Curie point depths and Moho of the Bulgarian territory. Geophys Res Abstr 9, 00771, SRef-ID: 1607-7962/gra/EGU2007-A-00771Google Scholar
  512. Trikkel A, Kuusik R (2003) Modeling of decomposition and sulphation of oil shale carbonates on the basis of natural limestone. Est Acad Publ Oil Shale 20(4):491–500Google Scholar
  513. Tsagarelli AL (1964) Geomorphology of georgia, quaternary system. In: Gamkrelidze P (ed) Geology of the USSR, vol X, Georgian SSR. Moscow-Leningrad, pp 332–352, 559–569 (in Russian)Google Scholar
  514. Tselentis G-A (1991) An attempt to define Curie point depths in Greece from aeromagnetic and heat flow data. Pure Appl Geoph 136(1):87–101Google Scholar
  515. Tsuzuki Y, Ogasawara K (1987) Dissolution experiments on albite and basalt glasses at various temperatures and their application to hydrothermal alteration in geothermal fields. Geochem J 21:262–281Google Scholar
  516. Utsunomiya S, Murakami T, Nakada M, Kasama T (2003) Iron oxidation state of a 2.45-Byr-old paleosol developed on mafic volcanics. Geochim et Cosmochim Acta 67:213–221Google Scholar
  517. Vacquier V (1998) A theory of the origin of the Earth’s internal heat. Tectonophysics 291(1–4):1–7Google Scholar
  518. Valley JW, Peck WH, King EM, Wilde SA (2002) A cool early Earth. Geology 30(4):351–354Google Scholar
  519. van den Berg AP, Yuen DA (2002) Delayed cooling of the Earth’s mantle due to variable thermal conductivity and the formation of a low conductivity zone. Earth Plan Sci Lett 199(3–4):403–413Google Scholar
  520. van der Velden A, Cook F (1996) Structure and tectonic development of the southern Rocky Mountain trench. Tectonics 15(3):517–544Google Scholar
  521. Van Kranendonk MJ, Collins WJ, Hickman A, Pawley MJ (2004) Critical tests of vertical vs. horizontal tectonic models for the Archaean East Pilbara Granite-Greenstone Terrane, Pilbara Craton, Western Australia. Precambr Res 131(3–4):173–211Google Scholar
  522. Van Kranendonk MJ, Hickman AR, Smithies H, Nelson DR (2002) Geology and tectonic evolution of the Archean North Pilbara Terrain, Pilbara Craton, western Australia. Econ Geol 97(4):695–732Google Scholar
  523. Van Kranendonk MJ, Philippot P, Lepot K, Bodorkos S, Pirajno F (2008) Geological setting of Earth’s oldest fossils in the ca. 3.5 Ga Dresser Formation, Pilbara Craton, western Australia. Precambr Res 167(1–2):93–124Google Scholar
  524. Van Kranendonk MJ, Pirajno F (2004) Geochemistry of metabasalts and hydrothermal alteration zones associated with c. 3.45 Ga chert and barite deposits: implications for the geological setting of the Warrawoona Group, Pilbara Craton, Australia. Geochem Explor Environ Anal 4(3):253–278Google Scholar
  525. Van Kranendonk MJ, Webb GE, Kamber BS (2003) Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean Ocean. Geobiology 1:91–108Google Scholar
  526. Varlakov AS (1996) Riftogenic ophiolites in geological evolution of the Earth. Bull Moscow Soc Nat Invest Geol Branch 71(3):19–30 (in Russian)Google Scholar
  527. Volozh YuA, Antipov MP, Brunet M-F, Garagash IA, Lobkovskii LI, Cadet J-P (2003) Pre-Mesozoic geodynamics of the Precaspian Basin (Kazakhstan). Sedim Geol 156(1–4):35–58Google Scholar
  528. Von Quadt A (1992) U-Pb zircon and Sm–Nd geochronology of mafic and ultramafic rocks from the central part of the Tauern Window (eastern Alps). Contrib Mineral Petrol 110:57–67Google Scholar
  529. Wacey D, McLoughlin N, Brasier M (2009) Looking through windows onto the earliest history of life on Earth and Mars. In: Seckbach J, Walsh M (eds) From fossils to astrobiology. Springer, Berlin, pp 39–68Google Scholar
  530. Wakabayashi J, Guha T, Detterman M (2005) Brewschist and Breweries (Brewschist II): A tour of fine rocks and the west coast brewing art field trip. Field trip guide, 2005Google Scholar
  531. Walker D, Agee CB, Zhang Y (1988) Fusion curve slope and crystal/liquid buoyancy. J Geophys Res 93(B1):313–323Google Scholar
  532. Wallis S, Takasu A, Enami M, Tsujimori T (2000) Eclogite and Related Metamorphism in the Sanbagawa belt, Southwest Japan. Bull Res Inst Nat Sci Okayama Univ Sci 26:3–18Google Scholar
  533. Walter MJ, Trønnes RG (2004) Early Earth differentiation. Earth Plan Sci Lett 225(3–4):253–269Google Scholar
  534. Wana JHM, Couceiro PRC, Pereira MC, Fabris JD, Fernandes FEI, Schaefer CEGR, Rechenberg HR, Abrahao WAP, Mantovani EC (2006) Occurrence of magnetite in the sand fraction of an Oxisol in the Brazilian savanna ecosystem, developed from a magnetite-free lithology. Aust J Soil Res 44(1):71–83Google Scholar
  535. Wang X, Zeng Z, Chen J (2009) Serpentinization of peridotites from the southern Mariana forearc. Progr Nat Sci 19:1287–1295Google Scholar
  536. Wen C, Jinbo S, Hongwei J, Jie L, Jiyuan Y, Jungfeng G, Xinyu L (2011) (U-Th)/He geochronological evidence for rapid uplift of Tianshan orogenic belt since Miocene. Goldschmidt conference abstracts, p 657Google Scholar
  537. Wenner DB, Taylor HP Jr (1971) Temperatures of serpentinization of ultramafic rocks based on O18/O16 fractionation between coexisting serpentine and magnetite. Contrib Mineral Petrol 32:165–185Google Scholar
  538. Wheeler P, White N (2002) Measuring dynamic topography: an analysis of Southeast Asia. Tectonics 21(5):1040. doi: 10.1029/2001TC900023 Google Scholar
  539. Whitehead J, Reynolds PH, Spray JG (1996) 40Ar/39Ar age constraints on Taconian and Acadian events in the Quebec Appalachians, Appalachians. Geology 24:359–362Google Scholar
  540. Whitehouse MJ, Myers JS, Fedo CM (2009) The Akilia controversy: field, structural and geochronological evidence questions interpretations of >3.8 Ga life in SW Greenland. J Geol Soc 166(2):335–348Google Scholar
  541. Windom KE, Unger CP (1988) Stability of the assemblage albite plus forsterite at high temperatures and pressures with petrologic implications. Contrib Mineral Petrol 98:390–400Google Scholar
  542. Wintsch RP, Byrne T, Toriumi M (1999) Exhumation of the Sanbagawa blueschist belt, SW Japan, by lateral flow and extrusion: evidence from structural kinematics and retrograde P–T–t paths, vol 154. Geological Society of London, London, pp 129–155Google Scholar
  543. Wright JE, Wyld SJ (2006) Gondwanan, Iapetan, Cordilleran interactions: A geodynamic model for the Paleozoic tectonic evolution of the North American Cordillera. In: Haggart JW, Enkin RJ, Monger JWH (eds) Paleogeography of the north American Cordillera: evidence for and against large-scale displacements. Geol Assoc Can Spec Pap 46, pp 377–408Google Scholar
  544. Wright RL, Nagel J, McTaggart KC (1982) Alpine ultramafic rocks of southwestern British Columbia. Can J Earth Sci 19(6):1156–1173Google Scholar
  545. Yakubchuk AS, Nikishin AM, Ishiwatari A (1994) A Late Proterozoic ophiolite pulse. In: Ishiwatari A, Malpas J, Ishizuka H (eds) Circum-Pacific ophiolites. Proc 29th Int Geol Congr, Part D, Kyoto 92, Utrecht, The Netherlands, pp 273–286Google Scholar
  546. Yao Y, Morteani G, Trumbull RB (1999) Fluid inclusion microthermometry and the P–T evolution of gold-bearing hydrothermal fluids in the Niuxinshan gold deposit, eastern Hebei province, NE China. Mineral Deposita 34:348–365Google Scholar
  547. Žáčková E, Konopásek J, Jeřábek P, Finger F, Košler J (2010) Early Carboniferous blueschist facies metamorphism in metapelites of the West Sudetes (Northern Saxothuringian Domain, Bohemian Massif). J Metamorp Geol 28(4):361–379Google Scholar
  548. Zahnle KJ, Kasting JF, Pollack JB (1988) Evolution of a steam atmosphere during Earth’s accretion. Icarus 74:62–97Google Scholar
  549. Zakariadze GS, Karamata S, Bayanova TB, Karpenko SF, Korikovsky SP, Mitrofanov FP, Sergeyev SA (2007) Composition and problems of origin of Paleozoic oceanic lithosphere framing European platform from south, exemplified by Eastern Mediterranean area. In: Geochemical, petrological and geophysical segmentation of the mid-oceanic ridges and its relationships with geodynamic parameters of the oceanic lithosphere accretion, Russian ridge workshop, Moscow, pp 23–24Google Scholar
  550. Zbinden EA, Holland HD, Feakes CR, Dobos SK (1988) The sturgeon falls paleosol and the composition of the atmosphere 1.1 Ga BP. Precambr Res 42:141–163Google Scholar
  551. Zhang Q, Wang ChY, Liu D, Jian P, Qian Q, Zhou G, Robinson PT (2008) A brief review of ophiolites in China. J Asian Earth Sci 32(5–6):308–324Google Scholar
  552. Zhang RY, Liou JG, Yang JS, Yui T-F (2000) Petrochemical constraints for dual origin of garnet peridotites from the Dabie-Sulu UHP terrane, eastern-central China. J Metamorphic Geol 18:149–166Google Scholar
  553. Zhou M-F, Malpas J, Robinson PT, Reynolds PH (1997) The dynamothermal aureole of the Donqiao ophiolite (northern Tibet). Can J Earth Sci 34(1):59–65Google Scholar
  554. Zimmermann R, Hammerschmidt K, Franz G (1994) Eocene high pressure metamorphism in the Penninic units of the Tauern Window (Eastern Alps): evidence from 40Ar-39Ar dating and petrological investigations. Contrib Mineral Petrol 117:175–186Google Scholar
  555. Zorin YuA (1981) The Baikal rift: an example of the intrusion of asthenospheric material into the lithosphere as the cause of disruption of lithospheric plates. Tectonophysics 73(1–3):91–104Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Geophysics, Atmospheric and Planetary SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.BYG Consulting Co.BostonUSA
  3. 3.Universal Geoscience and Environment Consulting CompanyWillowdaleCanada

Personalised recommendations