Paleoclimate and Present Climate Warming Trends

  • Lev EppelbaumEmail author
  • Izzy Kutasov
  • Arkady Pilchin
Part of the Lecture Notes in Earth System Sciences book series (LNESS)


Climate can be defined by the long-term statistics that describe the behavior and structure of the Earth’s atmosphere, hydrosphere, cryosphere, and according to Vernadsky (1945) the noosphere (“mind-sphere” or the Earth’s mental sheathe). Generally speaking, all life on the Earth depends on the hospitality of its climate. Any change in the Earth’s climate will have an immediate impact on humankind, biodiversity, and on the health. Climate of the past may be studied by the processing of thermal data observed in wells. The selection of the most suitable wells, intervals of thermal data analysis and different methodologies applied for such investigation are considered in this Chapter. Some nonlinear (and strongly nonlinear) aspects of thermal data examination may assist to re-estimate certain climate phenomena.


Geothermal Gradient Lateral Thermal Conductivity Deep Lake Subsurface Temperature Ground Surface Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abramowitz M, Stegun I (1965) Handbook of mathematical functions. Dover Publications Inc, New YorkGoogle Scholar
  2. Allen MR, Gillett NP, Kettleborough JA, Hegerl G, Schnur R, Stott PA, Boer G, Covey C, Delworth TL, Jones GS, Mitchell JFB, Barnett TP (2006) Quantifying anthropogenic influence on recent near-surface temperature change. Survey Geophys 27:491–544CrossRefGoogle Scholar
  3. Baker DG, Ruschy DL (1993) The recent warning in eastern Minnesota shown by ground temperatures. Geophys. Res Lett 20:371–374CrossRefGoogle Scholar
  4. Balobaev VT, Kutasov IM, Eppelbaum LV (2008) Borehole paleoclimatology—the effect of deep lakes and “heat Islands” on temperature profiles. Climate Past 4(2):1–18Google Scholar
  5. Balobaev VT, Skachkov YB, Shender NI (2009) Forecasting climate changes and the permafrost thickness for Central Yakutia into the year 2200. Geogr Nat Resourses 30:141–145CrossRefGoogle Scholar
  6. Balobayev VT, Shastkevich YG (1974) The estimation of the talik zones configuration and the steady temperature field of rocks beneath the lakes of arbitrary contour. Lakes of the Siberia Cryolithozone, Nauka, Novosibirsk, 116–127 (in Russian)Google Scholar
  7. Beltrami H, Jessop AM, Mareschal J-C (1992) Ground temperature histories in eastern and central Canada from geothermal measurements: evidence of climate change. Palaeogeogr Palaeoclimatol Palaeoecol (Glob Planet Change Sect) 98:167–183CrossRefGoogle Scholar
  8. Birchfield GE (1977) A study of the stability of model continental ice sheet subject to periodic variations in heat input. J Geophys Res 82(31):4909–4913CrossRefGoogle Scholar
  9. Blackwell DD, Steele JL, Brott CA (1980) The terrain effect on terrestrial heat flow. J Geophys Res 85(B9):4757–4772CrossRefGoogle Scholar
  10. Bodri L, Cermak V (1997) Climate change of the last two millennia inferred from borehole temperatures: results from the Czech Republic—part II. Glob Planet Change 14:163–173CrossRefGoogle Scholar
  11. Bodri L, Cermak V (2005) Borehole temperatures, climate change and the pre-observational surface air temperature mean: allowance for hydraulic conditions. Glob Planet Change 45:265–276CrossRefGoogle Scholar
  12. Boreholes locations and permafrost depths (1998) Alaska, USA, from US Geological Survey
  13. Carslow HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  14. Čermak V (1971) Underground temperature and inferred climatic temperature of the past millennium. Palaeogeogr Palaeoclimatol Palaeoecol 10:1–19CrossRefGoogle Scholar
  15. Chouinard C, Mareschal J-C (2007) Selection of borehole temperature depth profiles for regional climate reconstructions. Climate Past 3:297–313CrossRefGoogle Scholar
  16. Clauser C, Mareschal J-C (1995) Ground temperature history in central Europe from borehole temperature data. Geophys J Int 121:805–817CrossRefGoogle Scholar
  17. Covington WW (1981) Changes in the forest floor organic matter and nutrient content following clear cutting in northern hardwoods. Ecology 62:41–48CrossRefGoogle Scholar
  18. Dowdle WL, Cobb WM (1975) Static formation temperatures from well logs—an empirical method. J Pet Technol 27(11):1326–1330Google Scholar
  19. Earlougher RC Jr (1977) Advances in well test analysis. SPE, New YorkGoogle Scholar
  20. Eppelbaum LV (2013b) Non-stochastic long-term prediction model for US tornado level. Nat Hazards 69(3):1–10. doi: 10.1007/s11069-013-0787-7
  21. Eppelbaum LV, Kardashov VR (2001) Analysis of strongly nonlinear processes in geophysics. In: Moresi L, Müller D (eds) Proceedings of the chapman conference on exploration geodynamics, Dunsborough, Western Australia, pp 43–44Google Scholar
  22. Eppelbaum LV, Kardashov VR (2003) On one strongly non-linear generalization of the Sturm-Liouville problem. In: Proceedings of the colloquium on the occasion of the 200th anniversary of Charles-François Sturm and workshop on Sturm-Liouville theory, Geneva, Switzerland, pp 25–26Google Scholar
  23. Eppelbaum LV, Kutasov IM (2011) Estimation of the effect of thermal convection and casing on temperature regime of boreholes—a review. J Geophys Eng 8:R1–R10CrossRefGoogle Scholar
  24. Eppelbaum LV, Kutasov IM (2014) Advanced analysis of thermal data observed in subsurface wells unmasks the ancient climate. Transactions of the 10th EUG meeting, geophysical research abstracts, Vienna, Austria, vol 16, EGU2014-3261, pp 1–3Google Scholar
  25. Eppelbaum LV, Kutasov IM, Barak G (2006) Ground surface temperature histories inferred from 15 boreholes temperature profiles: comparison of two approaches. Earth Sci Res J 10(1):25–34Google Scholar
  26. González-Rouco JF, Beltrami H, Zorita E, Stevens MB (2008) Borehole climatology: a discussion based on contributions from climate modeling. Climate Past Discuss 4:1–80CrossRefGoogle Scholar
  27. Gosselin C, Mareschal J-C (2003) Variations in ground surface temperature histories in the Thompson Belt, Manitoba, Canada: environment and climate changes. Glob Planet Change 39:271–284CrossRefGoogle Scholar
  28. Gruber S, King L, Kohl T, Herz T, Haeberli W, Hoelzle M (2004) Interpretation of geothermal profiles perturbed by topography: the Alpine permafrost boreholes at Stockohorn plateau, Switzerland. Permafrost Periglac Process 15:349–357CrossRefGoogle Scholar
  29. Guillou-Frottier L, Mareschal J-C, Musset J (1998) Ground surface temperature history in central Canada inferred from 10 selected borehole temperature profiles. J Geophys Res 103(B4):7385–7397CrossRefGoogle Scholar
  30. Hamza VM, Cavalcanti ASB, Benyosef LCC (2007) Surface thermal perturbations of the recent past at low latitudes—inferences based on borehole temperature data from Eastern Brazil. Clim Past 3:513–526CrossRefGoogle Scholar
  31. Harris RN, Chapman SD (1995) Climate change on the Colorado Plateau of eastern Utah inferred from borehole temperatures. J Geophys Res 100:6367–6381CrossRefGoogle Scholar
  32. Hopcroft PO, Gallagher K, Pain CC (2007) Inference of past climate from borehole temperature data using Bayesian reversible jump Markov chain Monte Carlo. Geophys J Int 171:1430–1439CrossRefGoogle Scholar
  33. Huang S, Pollack HN (1998) Global borehole temperature database for climate reconstruction, IGBP PAGES/World data center-A for paleoclimatology data contribution series #1998-044. NOAA/NGDC paleoclimatology program, Boulder, CO, USA. )
  34. Huang S, Shen PY, Pollack HN (1996) Deriving century—long trends of surface temperature change from borehole temperatures. Geophys Res Lett 23:257–260CrossRefGoogle Scholar
  35. Huang S, Pollack HN, Shen PY (2000) Temperature trends over past five centuries reconstructed from borehole temperatures. Nature 403(17):756–758Google Scholar
  36. Jain S, Pulwarty RS (2006) Environmental and water decision-making in a changing climate. EOS 87(14):139CrossRefGoogle Scholar
  37. Judge AS, Taylor AE, Burgess M, Allen VS (1981) Canadian geothermal data collection—Northern Wells 1978–80. Geothermal series, vol 12. Earth Physics Branch, Energy, Mines and Resources, OttawaGoogle Scholar
  38. Kappelmeyer O, Hänel R (1974) Geothermics with special reference to application. Gebruder Borntrargen, BerlinGoogle Scholar
  39. Kardashov VR (1993) Generalized eigenvalue problems, stationary regimes and regimes with aggravation of strongly nonlinear nonstationary processes. Diff Eqn 29(3):597–604Google Scholar
  40. Kohl T (1999) Transient thermal effects below complex topographies. Tectonophysics 306(3–4):311–324CrossRefGoogle Scholar
  41. Kooi H (2008) Spatial variability in subsurface warming over the last three decades; insight from repeated borehole temperature measurements in The Netherlands. Earth Planet Sci Lett 270:86–94CrossRefGoogle Scholar
  42. Kostizyn VA (1984) Evolution of atmosphere biosphere and climate. Nauka, Moscow (in Russian)Google Scholar
  43. Kukkonen IT, Cermak V, Safanda J (1994) Subsurface temperature—depth profiles, anomalies due to climatic ground surface temperature changes or groundwater flow effects. Glob Planet Change 9:221–232CrossRefGoogle Scholar
  44. Kutasov IM (1987) Dimensionless temperature, cumulative heat flow and heat flow rate for a well with a constant bore-face temperature. Geothermics 16(2):467–472CrossRefGoogle Scholar
  45. Kutasov IM (1989) Application of the Horner method for a well produced at a constant bottomhole pressure. Formation Eval 3:90–92Google Scholar
  46. Kutasov IM (1999) Applied geothermics for petroleum engineers. Elsevier, AmsterdamGoogle Scholar
  47. Kutasov IM, Devyatkin VN (1977) Experimental investigation of temperature regime of shallow convective holes. CRREL Draft Trans 589Google Scholar
  48. Kutasov IM, Eppelbaum LV (2003) Prediction of formation temperatures in permafrost regions from temperature logs in deep wells—field cases. Permafrost Periglac Process 14(3):247–258CrossRefGoogle Scholar
  49. Kutasov IM, Eppelbaum LV (2007) Temperature well testing—utilization of the Slider’s method. J Geophys Eng 4(1):1–6CrossRefGoogle Scholar
  50. Kutasov IM, Eppelbaum LV (2013) Optimisation of temperature observational well selection. Explor Geophys 44(3):192–198CrossRefGoogle Scholar
  51. Kutasov IM, Eppelbaum LV, Dorofeyeva RP (2000) Physical-mathematical problem of the recent climate reconstruction from subsurface temperature logs. Sci Isr 2(2):79–83Google Scholar
  52. Lachenbruch AH (1965) Rapid estimation of the topographic disturbance to superficial thermal gradients. Rev Geophys 6:365–400CrossRefGoogle Scholar
  53. Lachenbruch AH, Brewer MC (1959) Dissipation of the temperature effect of drilling a well in Arctic Alaska. US Geol Surv Bull 1083-C:74–109Google Scholar
  54. Lachenbruch AH, Marshall BV (1986) Changing climate: geothermal evidence from permafrost in the Alaskan Arctic. Science 234:689–696CrossRefGoogle Scholar
  55. Lachenbruch AH, Cladouhos TT, Saltus RW (1988) Permafrost temperature and the changing climate. In: Proceedings of the 5th international conference on permafrost, vol 3. Tapir Publication, Trondheim, Norway, pp 9–17Google Scholar
  56. Lewis TJ, Wang K (1992) Influence of terrain on bedrock temperatures. Palaeogeogr Palaeoclimatol Palaeoecol 98:87–100CrossRefGoogle Scholar
  57. Lewis TJ, Wang K (1998) Geothermal evidence for deforestation induced warming: implications for the climatic impact of land development. Geophys Res Lett 25:535–538CrossRefGoogle Scholar
  58. Majorowicz JA, Safanda J (2005) Measured versus simulated transients of temperature logs—a test of borehole climatology. J Geophys Eng 2:1–8CrossRefGoogle Scholar
  59. Majorowicz JA, Skinner WP (1997) Potential causes of differences between ground and surface air temperature warming across different ecozones in Alberta, Canada. Glob Planet Change 15:79–91CrossRefGoogle Scholar
  60. Majorowicz JA, Skinner WP, Safanda J (2012) Western Canadian sedimentary basin—depth transients from repeated well logs: evidence of recent decade subsurface heat gain due to climatic warming. J Geophys Eng 9:127–137CrossRefGoogle Scholar
  61. Maple W (2001) Maple 7 learning guide. Waterloo Maple Inc, WaterlooGoogle Scholar
  62. Mareschal J-C, Beltrami H (1992) Evidence for recent warming from perturbed geothermal gradients: examples from Eastern Canada. Clim Dyn 6(3–4):135–143Google Scholar
  63. Milankovitch M (1941) Canon of insolation and the ice-age problem. Special Publication of the Royal Serbian Academy, Serbia, vol 132 (in German)Google Scholar
  64. Moritz RE (1979) Nonlinear analysis of a simple sea ice—ocean temperature oscillator model. J Geophys Res 84(C8):4916–4920CrossRefGoogle Scholar
  65. Mottaghy D, Schellschmidt R, Popov YA, Clauser C, Kukkonen IT, Nover G, Milanovsky S, Romushkevich RA (2005) New heat flow data from the immediate vicinity of the Kola super-deep borehole: vertical variation in heat flow confirmed and attributed to advection. Tectonophysics 401:119–142CrossRefGoogle Scholar
  66. Mukhtarov AS, Kadirov FA, Mamedov VA (2010) Reconstruction of the surface temperature in the Kura depression (Azerbaijan) by the inversion of borehole data. Izv Russ Acad Sci Phys Earth 46(6):524–528CrossRefGoogle Scholar
  67. Muto A, Scambos TA, Steffen K, Slater AG, Clow DG (2011) Recent surface temperature trends in the interior of East Antarctica from borehole firn temperature measurements and geophysical inverse methods. Geophys Res Lett 38:L15502. doi: 10.1029/2011GL048086 CrossRefGoogle Scholar
  68. Nitoiu D, Beltrami H (2005) Subsurface thermal effects of land use changes. J Geophys Res 110:F01005. doi: 10.1029/2004JF000151 Google Scholar
  69. Oh J, Reischmann E, Rial JA (2014) Polar synchronization and the synchronized climatic history of Greenland and Antarctica. Quat Sci Rev 83:129–142CrossRefGoogle Scholar
  70. Ort MH, Elson MD, Anderson KS, Duffield WA, Samples TL (2008) Variable effects of cinder-cone eruptions on prehistoric agrarian human populations. J Volcanol Geoth Res 176:363–376CrossRefGoogle Scholar
  71. Pimenov VP, Popov YA, Klimanov VA (1996) Vertical variations of thermal flow and paleoclimate. Isv Russ Acad Sci Phys Earth 6:84–92Google Scholar
  72. Pollack HN, Huang S (2000) Climate reconstruction from subsurface temperatures. Ann Rev Earth Planet Sci 28:339–365CrossRefGoogle Scholar
  73. Pollack HN, Shauopeng H, Shen P-Y (2000) Climate change record in subsurface temperatures: a global perspective. Science 282:279–281CrossRefGoogle Scholar
  74. Powell WG, Chapman DS, Balling N, Beck AE (1988) Continental heat-flow density. In: Hänel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat-flow density determination. Kluwer Academy Publication, Dordrecht, Boston, London, pp 167–222CrossRefGoogle Scholar
  75. Rath V, Mottaghy D (2007) Smooth inversion for ground surface temperature histories: estimating the optimum regularization parameter by generalized cross-validation. Geophys J Int 171:1440–1448CrossRefGoogle Scholar
  76. Roy S, Chapman DS (2012) Borehole temperatures and climate change: ground temperature change in south India over the past two centuries. J Geophys Res D Atmos 117(11):D11105CrossRefGoogle Scholar
  77. Safanda J (1994) Effects of topography and climatic changes on the temperature in borehole GFU-1, Prague. Tectonophysics 239:187–197CrossRefGoogle Scholar
  78. Safanda J (1999) Ground surface temperature as a function of slope angle and slope orientation and its effect on the subsurface temperature field. Tectonophysics 306(3–4):367–376CrossRefGoogle Scholar
  79. Safanda J, Rajver D, Correia A, Dedecek P (2007) Repeated temperature logs from Czech, Slovenian and Portuguese borehole climate observatories. Climate Past 3:453–462CrossRefGoogle Scholar
  80. Schmidt BE (1997) On a nonlinear eigenvalue problem arising from climate modeling. Nonlinear Anal 30(6):3645–3656CrossRefGoogle Scholar
  81. Sergin VY (1979) Numerical modeling of the glaciers-ocean-atmosphere global system. J Geophys Res 78(C6):3191–3204CrossRefGoogle Scholar
  82. Shen PY, Beck AE (1992) Paleoclimate change and heat flow density inferred from temperature data in the Superior Province of the Canadian shield. Palaeogeogr Palaeoclimatol Palaeoecol (Glob Planet Change Sect) 98:143–165CrossRefGoogle Scholar
  83. Shen PY, Wang K, Beltrami H, Mareschal J-C (1992) A comparative study of inverse methods for estimating climatic history from borehole temperature data. Glob Planet Change 98:113–127CrossRefGoogle Scholar
  84. Shen PY, Pollack HN, Huang S, Wang K (1995) Effects of subsurface heterogeneity on the inference of climate change from borehole temperature data: model studies and field examples from Canada. J Geophys Res 100:6383–6396CrossRefGoogle Scholar
  85. Taniguchi M (2006) Anthropogenic effects on subsurface temperature in Bangkok. Climate Past Discuss 2:832–846CrossRefGoogle Scholar
  86. Taylor AE, Burgess M, Judge AS, Allen VS (1982) Canadian geothermal data collection—Northern Wells 1981. Geothermal series, vol 13. Earth Physics Branch, Energy, Mines and Resources, OttawaGoogle Scholar
  87. Timko DJ, Fertl WH (1972) How downhole temperatures and pressures affect drilling. World Oil 175:73–78Google Scholar
  88. Tsytovich NA (1975) The mechanics of frozen ground. Scripta Book Company, Washington, pp 8–250Google Scholar
  89. Vernadsky VI (1945) The biosphere and the noosphere. Sci Am 33(1):1–12Google Scholar
  90. Wang K (1992) Estimation of ground surface temperatures from borehole temperature data. J Geophys Res 97:2095–2106CrossRefGoogle Scholar
  91. Wang G, Schimel D (2003) Climate change, climatemodes, and climate impacts. Annu Rev Environ Resour 28:1–28CrossRefGoogle Scholar
  92. Weart S (2003) The discovery of rapid climate change. Phys Today 8:30–36CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Geophysics, Atmospheric and Planetary SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.BYG Consulting Co.BostonUSA
  3. 3.Universal Geoscience and Environment Consulting CompanyWillowdaleCanada

Personalised recommendations