The Thermal Field of the Earth

  • Lev EppelbaumEmail author
  • Izzy Kutasov
  • Arkady Pilchin
Part of the Lecture Notes in Earth System Sciences book series (LNESS)


The Earth is about 4.6 billion years old. In terms of its thermal regime, the planet is in the process of cooling. However, to have reached its current state, the Earth and the other objects making up the Solar System went through a number of stages such as the accretion of the planet from dust of the solar nebula, the formation of the magma-ocean, stratification of matter by density, solidification of the magma-ocean, formation of the lithosphere which is taking place today, periods of increased volcanic and metamorphic activity, numerous tectonic processes with global and regional significance (obduction, subduction, orogeny, etc.), heat production by short-lived and long-lived radioisotopes, and numerous other features and processes related to thermodynamic and temperature conditions. In this Chapter are analyzed such fundamental phenomena as sources of the thermal energy in the Earth's interior, geothermal gradient, density of heat flow, heat flow and geological age, mantle heat flow, temperature distribution inside the Earth and other Earth-thermal interactions.


  1. Abbady AGE, El-Arabi AM, Abbady A (2006) Heat production rate from radioactive elements in igneous and metamorphic rocks in Eastern Desert, Egypt. Appl Radiat Isot 64(1):131–137Google Scholar
  2. Abbott D, Burgess L, Longhi J (1994) An empirical thermal history of the Earth’s upper mantle. J Geophys Res 99:13835–13850Google Scholar
  3. Abe Y (1997) Thermal and chemical evolution of the terrestrial magma ocean. Phys Earth Planet Int 100(1–4):27–39Google Scholar
  4. Abe Y, Matsui T (1985) The formation of an impact-generated H2O atmosphere and its implications for the early thermal history of the earth. J Geophys Res 90:C545–C559Google Scholar
  5. Adams LX (1924) Temperatures at moderate depths within the earth. J Wash Acad Sci 459–472Google Scholar
  6. Adie R (1854) On the temperature of running streams during periods of frost. Edinb Phil J LVI:224–229Google Scholar
  7. Adie R (1863) On the mean annual temperature of Western Europe, compared with other climes. Brit Meteor Soc Proc I:303–306Google Scholar
  8. Adushkin VV, Vityazev AV (2007) Origin and evolution of Earth: present view. Vestnik Russ Acad Sci 77(5):396–402 (in Russian)Google Scholar
  9. Albarede F (1975) The heat flow/heat generation relationship: An interaction model of fluids with cooling intrusions. Earth Planet Sci Lett 27(1):73–78Google Scholar
  10. Aleinikov AL, Belikov VT, Eppelbaum LV (2001) Some Physical Foundations of Geodynamics. Kedem Printing-House, Tel Aviv, Israel (in Russian, contents and summary in English)Google Scholar
  11. Alexidze MA, Gugunava GG, Kiria DK, Chelidze TL (1993) A three-dimensional stationary model of the thermal and thermoelastic fields of the Caucasus. Tectonophysics 227(1–4):191–203Google Scholar
  12. Amirkhanov KhI, Rovnin LI, Suyetnov VC, Gaurbekov KhA, Baykov AM (1975) Experience of oil and gas thermal research. Makhachkala, Russia (in Russian)Google Scholar
  13. Anderson EM (1934) Earth contraction and mountain building. Gerlands Beiträge zur Geophisik 42:133–159, 43:1–18Google Scholar
  14. Anderson DL (1967) A seismic equation of state. Geophys J Roy Astron Soc 13:9–30Google Scholar
  15. Anderson DL (1989) Theory of the Earth. Blackwell Science, OxfordGoogle Scholar
  16. Anderson DL (2002a) The case for irreversible chemical stratification of the mantle. Int Geol Rev 44(2):97–116Google Scholar
  17. Anderson DL (2002b) The inner inner core of Earth. Proc Natl Acad Sci USA 99(22):13966–13968Google Scholar
  18. Anderson DL (2006) Speculations on the nature and cause of mantle heterogeneity. Tectonophysics 416(1–4):7–22Google Scholar
  19. Anderson DL (2007) New theory of the earth. Cambridge University Press, CambridgeGoogle Scholar
  20. Antonov VE, Baier M, Dorner B, Fedotov VK, Grosse G, Kolesnikov AI, Ponyatovsky EG, Schneider G, Wagner FE (2002) High-pressure hydrides of iron and its alloys. J Phys Condens Matter 14:6427–6445Google Scholar
  21. Arago DFJ (1820) Sur la temperature de l’interieur du globe. Ann Chim, XIII, pp 183–211Google Scholar
  22. Arago F (1857) Sur l’état thermométrique du globe terrestre. In: Notices Scientifiques, Oeuvres Complètes, 2ème éd. tome cinquième, Paris, Legrand, Pomey et Crouzet, pp 148–646Google Scholar
  23. Arevalo R Jr, McDonough WF, Luong M (2009) The K/U ratio of the silicate Earth: insights into mantle composition, structure and thermal evolution. Earth Planet Sci Lett 278:361–369Google Scholar
  24. Arshavskaya NI (1979) On the linear relationship between heat ffow and heat generation in the shields. In: Experimental and theoretical studies of heat flow. Nauka, Moscow, pp 177–194 (in Russian)Google Scholar
  25. Ashwal LD, Morgan P, Kelley SA, Percival J (1987) Heat production in an Archean crustal profile and implications for heat flow and mobilization of heat producing elements. Earth Planet Sci Lett 85:439–450Google Scholar
  26. Attoh K (2000) Contrasting metamorphic record of heat production anomalies in the Penokean Orogen of Northern Michigan. J Geol 108:353–361Google Scholar
  27. Bagin VI, Brodskaya SY, Petrova GN, Pechersky DM (1969) Study on the ferromagnetic fractions in basalts. Izv Acad Nauk USSR Ser Phys Earth (11):66–76 (in Russian)Google Scholar
  28. Bakewell R (1838) An introduction to geology: intended to convey a practical knowledge of the science, and comprising the most important recent discoveries; with explanations of the facts and phenomena which serve to confirm or invalidate various geological theories. Longman, Orme, Brown, Green, and Longmans, LondonGoogle Scholar
  29. Baldwin JA, Bowring SA, Williams ML, Williams IS (2004) Eclogites of the Snowbird tectonic zone: petrological and U-Pb geochronological evidence for Paleoproterozoic high-pressure metamorphism in the western Canadian Shield. Contrib Mineral Petrol 147(5):528–548Google Scholar
  30. Balling NP (1976) Geothermal models of the crust and uppermost mantle of the Fennoscandian shield in south Norway and the Danisch Embayment. J Geophys 42:237–256Google Scholar
  31. Balobaev VT, Kutasov IM, Eppelbaum LV (2009) The maximum effect of deep lakes on temperature profiles – determination of the geothermal gradient. Earth Sci Res J 13(1):54–63Google Scholar
  32. Barkstrom BR, Smith GL (1986) The Earth radiation budget experiment: science and implementation. Rev Geophys 24:379–390Google Scholar
  33. Basu AR, Ongley JS, Macgregor ID (1986) Eclogites, pyroxene geotherm, and layered mantle convection. Science 233(4770):1303–1305Google Scholar
  34. Beckwith SVW, Sargent AI, Chini RS, Guesten R (1990) A survey for circumstellar disks around young stellar objects. Astron J 99:924–945Google Scholar
  35. Becquerel H (1896) Sur les radiations émises par phosphorescence. Comptes rendus de l’Académie des Sciences, Paris 122:420–421 (in French)Google Scholar
  36. Becquerel H (1901) Sur la radioactivitie de l’uranium. Comptes Rendus de Seances de l’academie de Sciences 83:977–978 (in French)Google Scholar
  37. Bedini R-M, Blichert-Toft J, Boyet M, Albarède F (2004) Isotopic constraints on the cooling of the continental lithosphere. Earth Planet Sci Lett 223(1–2):99–111Google Scholar
  38. Benenson W, Harris JW, Stocker H, Lutz H (eds) (2002) Handbook of physics, 4th edn. Springer, New YorkGoogle Scholar
  39. Benfield AE (1939) Terrestrial heat flow in Great Britian. Proc R Soc Lond A 173:428–450Google Scholar
  40. Bennett J, Donahue M, Schneider N, Voit M (2004) The cosmic perspective, 3rd edn. San Francisco Pearson Education Inc. publ. as Addison Wesley, 844 pGoogle Scholar
  41. Birch F (1960) The velocity of compressional waves in rocks to 10 kilobars. Part I. J Geophys Res 65:1083–1102Google Scholar
  42. Birch F (1961) The velocity of compressional waves in rocks to 10 kilobars. Part 2. J Geophys Res 66:2199–2224Google Scholar
  43. Birch F (1965) Energetics of core formation. J Geophys Res 24(70):6217–6221Google Scholar
  44. Birch F, Roy RF, Decker ER (1968) Heat flow and thermal history in New York and New England. In: Zen E, White WS, Hadley JB, Thompson Jr JB (eds) Studies of appalachian geology: Northern and maritime. Interscience, New York, pp 437–451Google Scholar
  45. Bischof G (1836) On, the cause of the temperature of hot and thermal springs; and on the bearings of this subject, as connected with the general question regarding the internal temperature of the Earth. Edinb Phil J XX(XL):329–375Google Scholar
  46. Bjørnerud MG, Austrheim H (2004) Inhibited eclogite formation: the key to the rapid growth of strong and buoyant Archean continental crust. Geology 32(9):765–768Google Scholar
  47. Blackwell DD (1971) The thermal structure of the continental crust. In: Heacock JD (ed) The structure and physical properties of the Earth’s crust. Geophys Monogr Ser 14:169–184. AGU, Washington, DCGoogle Scholar
  48. Blackwell DD (1983) Heat flow in the Northern Basin and Range Province. In: Geothermal Resources Council (ed) The role of heat in the development of energy and mineral resources in the Northern Basin and Range Province, Special Report 13, pp 81–93Google Scholar
  49. Blackwell DD, Thakur M (2007) Birch’s crustal heat production-heat flow law: key to quantifying mantle heat flow as a function of time. In: Preoceedings of the American Geophysical Union Fall Meeting 2007, Abstract T22B-07Google Scholar
  50. Blackwell DD, Steele JL, Brott CA (1980) The terrain effect on terrestrial heat flow. J Geophys Res 85(B9):4757–4772Google Scholar
  51. Blackwell DD, Steele JL, Carter LC (1991) Heat flow patterns of the North American continent: a discussion of the Dnag geothermal map of North America. In: Slemmons DB, Engdahl ER, Zoback MD, Blackwell DD (eds) Neotectonics of North America, Boulder, Colorado, Geological Society of America, Decade Map volume 1Google Scholar
  52. Bodell JM, Chapman DS (1982) Heat flow in the North-Central Colorado Plateu. J Geophys Res 87:2869–2884Google Scholar
  53. Bodorkos S, Reddy SM (2004) Proterozoic cooling and exhumation of the northern central Halls Creek Orogen, Western Australia: constraints from a reconnaissance 40Ar/39Ar study. Aust J Earth Sci 51(4):591–609Google Scholar
  54. Boss AP (1998) Temperatures in protoplanetary disks. Ann Rev Earth Plan Sci 26:53–80Google Scholar
  55. Bott MHP (1982) The interior of the Earth: its structure, constitution, and evolution, 2nd edn. Elsevier, New York, 403 pGoogle Scholar
  56. Boyet M, Carlson RW (2007) A highly depleted moon or a non-magma ocean origin for the lunar crust? Earth Planet Sci Lett 262(3–4):505–516Google Scholar
  57. Brady RJ, Ducea MN, Kidder SB, Saleeby JB (2006) The distribution of radiogenic heat production as a function of depth in the Sierra Nevada batholith, California. Lithos 86:229–244Google Scholar
  58. Brandner W (2006) Planet formation: theory, observations and experiments. Cambridge University Press, CambridgeGoogle Scholar
  59. Brown GC, Mussett AE (1993) The inaccessible Earth. Chapman & Hall, LondonGoogle Scholar
  60. Brush SG (1977) The origin of the planetesimal theory. Orig Life Evol Biosph 8(1):3–6Google Scholar
  61. Bucher WH (1933) The deformation of the Earth’s Crust. Princeton University Press, PrincetonGoogle Scholar
  62. Bullard EC (1939) Heat flow in South Africa. Proc R Soc Lond A 173:474–502Google Scholar
  63. Bullard EC (1954) The flow of heat through the floor of the Atlantic Ocean. Proc R Soc Lond A 222:408–429Google Scholar
  64. Burke KC, Kidd WSF (1978) Were Archean continental geothermal gradients much steeper than those of today? Nature 272:240–241Google Scholar
  65. Cameron AGW (1973) Accumulation processes in the primitive solar nebula. Icarus 18(3):407–450Google Scholar
  66. Cameron AGW (1978) The primitive solar accretion disk and the formation of planets. In: Dermot SF (ed) The origin of the Solar System. Willey, New York, pp 49–74Google Scholar
  67. Cameron AGW (1995) The first ten million years in the solar nebula. Meteoritics 30:133–161Google Scholar
  68. Cameron AGW (1997) The Origin of the Moon and the Single Impact Hypothesis V. Icarus 126(1):126–137Google Scholar
  69. Cameron AGW, Pine MR (1973) Numerical models of the primitive solar nebula. Icarus 18:377–406Google Scholar
  70. Caro G, Bourdon B, Wood BJ, Corgne A (2005) Trace-element fractionation in Hadean mantle generated by melt segregation from a magma ocean. Nature 436:246–249Google Scholar
  71. Carpenter WM (1843) Some remarks on the methods in common use of obtaining the mean temperature of places, and on the supposed difference between temperature of the air and that of the Earth. Am J Sci Arts 44:50–54Google Scholar
  72. Carslaw HS (1906) Introduction to the mathematical theory of the conduction of heat in solids. Dover Publications, LondonGoogle Scholar
  73. Carslaw HS (1921) Introduction to the mathematical theory of the conduction of heat in solids, 2nd edn. Completely revised. Macmillan and Co., Ltd, LondonGoogle Scholar
  74. Carslaw HS, Jaeger JC (1946) Conduction of heat in solids. Oxford University Press, OxfordGoogle Scholar
  75. Carslow HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  76. Čermák V (1982a) A geothermal model of the lithosphere and a map of the thickness of the lithosphere on the territory of the USSR. Izv Acad Sci USSR Phys Earth 18(1):18–27Google Scholar
  77. Čermák V (1982b) Crustai temperature and mantle heat flow in Europe. Tectonophysics 83:123–142Google Scholar
  78. Čermák V (1989) Crustal heat production and mantle heat flow in Central and Eastern Europe. Tectonophysics 159(3–4):195–215Google Scholar
  79. Čermák V (1993) Lithospheric thermal regimes in Europe. Phys Earth Planet Int 79:179–193Google Scholar
  80. Čermák V, Bodri L (1995) Three-dimensional deep temperature modelling along the European geotraverse. Tectonophysics 244(1–3):1–11Google Scholar
  81. Čermak V, Hänel R (1988) Geothermal maps. In: Hänel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat flow density determination. Kluwer Academic Publishers, Dordrecht, pp 261–300Google Scholar
  82. Čermák V, Hurting E (1979) Heat flow map of Europe, 1:5,000,000. In: Čermák V, Rybach L (eds) Terrestrial heat flow in Europe. Springer, BerlinGoogle Scholar
  83. Čermák V, Rybach L (eds) (1979) Terrestrial heat flow in Europe. Springer, BerlinGoogle Scholar
  84. Čermák V, Rybach L (eds) (1991) Terrestrial heat flow and the lithosphere structure. Springer, BerlinGoogle Scholar
  85. Čermák V, Bodri L, Rybach L, Buntebarth G (1990) Relationship between seismic velocity and heat production: comparison between two sets of data and test of validity. Earth Planet Sci Lett 99(1–2):48–57Google Scholar
  86. Čermàk V, Balling N, Kukkonen IT, Zui VI (1993) Heat flow in the Baltic Shield—Results of the lithospheric geothermal modelling. Precambr Res 64:53–65Google Scholar
  87. Čermák V (1984) Heat flow and deep structure of Europe. In: Proceedings of 27th international geological congress, vol 8, Moscow, pp 94–110Google Scholar
  88. Čermák V, Bodri L (1998) Heat flow map of Europe revisited. In: Clauser C (ed) Mitteilungen DGG, Sonderband II/1998, pp 58–63Google Scholar
  89. Čermák V, Lubimova EA, Stegina L (1976) Geothermal mapping in Central and Eastern Europe. In: Development and use of geothermal resources, vol 1. Transactions of the 2nd UN symposium, San Francisco. US Government Printing Office, Washington, pp 47–57Google Scholar
  90. Chamberlin TC (1916) The origin of the earth. The University of Chicago Press, ChicagoGoogle Scholar
  91. Chandrasekhar S (1935) The radiation equilibrium of the outer layer of a star with special reference to the blanquening effect of the reverse layer. Mon Not R Astron Soc 95:21Google Scholar
  92. Chapman DS, Furlong KP (1977) Continental heat flow-age relationships (abstract). EOS Trans 58:1240Google Scholar
  93. Chapman SS, Pollack HN (1975) Global heat flow: a new look. Earth Planet Sci Lett 28:23–32Google Scholar
  94. Cheremensky GA (1977) Applied Geothermics. Nedra, Leningrad (in Russian)Google Scholar
  95. Chevalier l’abbé (1782) Observations et remarques sur la température tic l’hiver de l’année 1782. Mémoires de l’Académie impériale et royale de Bruxelles IV:271–275Google Scholar
  96. Christensen UR (1985) Thermal evolution models for the Earth. J Geophys Res 90:2995–3007Google Scholar
  97. Christensen UR (1989) Models of mantle convection: one or several layers. Phil Trans R Soc Lond A 328:417–424Google Scholar
  98. Christoffel CA, Connelly JN, Åhäll K-I (1999) Timing and characterization of recurrent pre-Sveconorwegian metamorphism and deformation in the Varberg-Halmstad region of SW Sweden. Precambr Res 98(3–4):173–195Google Scholar
  99. Chyba ChF (1990) Impact delivery and erosion of planetary oceans in the early inner Solar System. Nature 343:129–133Google Scholar
  100. Clauser Ch (2009) Heat transport processes in the Earth’s crust. Surv Geophys 30:163–191Google Scholar
  101. Condie KC (1981) Archean greenstone belts. Elsevier, AmsterdamGoogle Scholar
  102. Condie KC (1989a) Origin of the Earth’s crust. Global Planet Change 1(1–2):57–81Google Scholar
  103. Condie KC (1989b) Plate tectonics and crustal evolution, 3rd edn. Pergamon Press, New YorkGoogle Scholar
  104. Cook FA, Turcotte DL (1981) Parameterized convection and the thermal evolution of the Earth. Tectonophysics 75(1–2):1–17Google Scholar
  105. Cordier PLA (1827) Essai sur la température de l’intérieur de la terre. In: Mémoires de l’Académie des Sciences, pp 473–556 (in French)Google Scholar
  106. Costain JK, Speer JA, Glover L III, Perry L, Dashevsky S, McKinney M (1986) Heat flow in the Piedmont and Atlantic Coastal Plain of the southeastern United States. J Geophys Res 91(B2):2123–2136Google Scholar
  107. Cox PA (1990) The elements: their origin, abundance, and distribution. Oxford University Press, New YorkGoogle Scholar
  108. Crookes W (1900) Radio-activity of uranium. Proc R Soc Lond 66:409–422Google Scholar
  109. Cull JP (1982) An appraisal of Australian heat flow data, BMR. J Aust Geol Geophys 7:11–21Google Scholar
  110. Cull JP (1991) Heat flow and regional geophysics in Australia. In: Cermak V, Rybach L (eds) Terrestrial heat flow and the lithosphere structure. Springer, New York, pp 486–500Google Scholar
  111. Curie M (1898) Rays emmitted by compounds of uranium and thorium. Comptes Rendus de Seances de l’academie de Sciences 126:1101–1103 (in French)Google Scholar
  112. Curie P, Curie M (1898) Sur une nouvelle substance radioactive, contenue dans la pechblende. Comptes Rendus de Seances de l’academie de Sciences 127:175–178 (in French)Google Scholar
  113. Curie P, Laborde A (1903) On the heat spontaneously released by the salts of radium. Comptes Rendus de Seances de l’academie de Sciences 86:673Google Scholar
  114. Curie P, Laborde A (1906) Sur la radioactivité des gaz qui proviennent de l’eau des sources thermales. Comptes Rendus de Seances de l’academie de Sciences 142:1462–1465Google Scholar
  115. Curie P, Curie M, Bemont G (1898) Sur une nouvelle substance fortement radioactive, contenue dans la pechblende. Comptes Rendus de Seances de l’academie de Sciences 127:1215–1217 (in French)Google Scholar
  116. d’Aubuisson de Voisins JF (1801) Extrait d’une lettre contenant quelques observations thermometriques faites a la mine de Beschert-Gliick. J Min XI:1801–1802, 517–520Google Scholar
  117. d’Aubuisson de Voisins JF (1802) Sur la temperature dans les mines de Freyberg. J Min, XIII, pp 113–122Google Scholar
  118. d’Aubuisson de Voisins JF (1806) Notices sur la Temperature de la terre. J Phys LXIL:443–461 (in French)Google Scholar
  119. d’Aubuisson de Voisins JF (1830) Mernoire sur la temperature de la terre. Mem Acad II:102–107 (Toulouse) (in French)Google Scholar
  120. da Silva Schmitt R, Trouw RAJ, Van Schmus WR, Pimentel MM (2004) Late amalgamation in the central part of West Gondwana: new geochronological data and the characterization of a Cambrian collisional orogeny in the Ribeira Belt (SE Brazil). Precambr Res 133(1–2):29–61Google Scholar
  121. Daillant OR, Bernollin A, Josset M, Fifield KL (2009) Potential of lichens for monitoring iodine-129 and chlorine-36. J Radioanal Nucl Chem 281(2):241–245Google Scholar
  122. Dalrymple GB (2004) Ancient earth, ancient skies: the age of the earth and its cosmic surroundings. Stanford University Press, Stanford, 247 pGoogle Scholar
  123. Daubeny C (1837) Report on the present state of our knowledge with respect to mineral and thermal waters. Report: 6th meeting of the British Association for the advancement of science, vol V. John Murray, London, pp 1–96Google Scholar
  124. Davies GF (1980) Thermal histories of convective Earth models and constraints on radiogenic heat production in the Earth. J Geophys Res 85:2517–2530Google Scholar
  125. Davies GE (1990) Heat and Mass transport in the early Earth. In: Jones JH, Newsom HE (eds) The origin of the Earth. Oxford University Press, Oxford, pp 151–174Google Scholar
  126. Davies JH, Davies DR (2010) Earth’s surface heat flux. Solid Earth 1:5–24Google Scholar
  127. Davis EE, Elderfield H (eds) (2005) Hydrogeology of the oceanic lithosphere. Cambridge University Press, CambridgeGoogle Scholar
  128. de Beaumont JBALLE (1830) Recherches sur quelques-unes des revolutions de la surface du globe. Crochard (in French)Google Scholar
  129. de Buffon G-L (1778) Les époques de la nature. In: Histoire naturelle, vol XII. De L’Imprimerie Royale, À Paris (in French)Google Scholar
  130. De La Beche HT (1853) The geological observer, 2nd edn. Longman, Brown, Green, and Longmans, LondonGoogle Scholar
  131. De Smet J, van den Berg NJ (2000) Early formation and long-term stability of continents resulting from decompression melting in a convecting mantle. Tectonophysics 322(1–2):19–33Google Scholar
  132. Decker ER, Baker KR, Bucher GJ, Heasler HP (1980) Preliminary heat flow and radioactivity studies in Wyoming. J Geophys Res 85:311–321Google Scholar
  133. Deming D (2002) Origin of the ocean and continents: a unified theory of the Earth. Int Geol Rev 44(2):137–152Google Scholar
  134. Derry LA, Jacobsen SB (1990) The chemical evolution of Precambrian seawater: evidence from REEs in banded iron formation. Geochim Cosmochim Acta 54:2965–2977Google Scholar
  135. Descartes R (1644). Principia Philosophiae, AmsterdamGoogle Scholar
  136. Détraz C (1999) The discovery of radioactivity: a one-hundred year heritage. Nucl Phys A 654(1–2):C12–C18Google Scholar
  137. Dickson MH, Fanelli M (2004) What is geothermal energy?. Istituto di Geoscienze e Georisorse, CNR, PisaGoogle Scholar
  138. Dmitriev VI, Rotanova NM, Zakharova OK (1975) Construction of mathematical models of distribution of electric conductivity and temperature inside the Earth. In: Analysis of space-temporary structure of geomagnetic field. Nauka, Moscow, pp 111–129Google Scholar
  139. Dobrzhinetskaya LF, Eide EA, Larsen RB, Sturt BA, Trønnes RG, Smith DC, Taylor WR, Posukhova TV (1995) Microdiamonds in high-grade metamorphic rocks of the Western Gneiss region, Norway. Geology 23(7):597–600Google Scholar
  140. Dörr W, Belka Z, Marheine D, Schastok J, Valverde-Vaquero P, Wiszniewska J (2002) U-Pb and Ar–Ar geochronology of anorogenic granite magmatism of the Mazury complex, NE Poland. Precambr Res 119(1–4):101–120Google Scholar
  141. Duchkov AD (ed) (1985) Catalog of heat flow data from Siberia (1966–1984). Institute of Geology and Geophysics, Siberian Branch of the Academic Science of the USSR, Novosibirsk (in Russian)Google Scholar
  142. Duchkov AD (1991) Review of Siberian heat flow data. In: Cermak V, Rybach L (eds) Terrestrial heat flow and the lithosphere structure. Springer, New York, pp 426–443Google Scholar
  143. Dutrow BL, Foster CT Jr, Henry DJ (1999) Tourmaline-rich pseudomorphs in sillimanite zone metapelites: demarcation of an infiltration front. Am Mineral 84:794–805Google Scholar
  144. Elkins-Tanton LT, Parmentier EM (2004) Consequences of high crystallinity for the evolution of the lunar msgma ocean: trapped plagioclase. Lunar Planet Sci XXXV:1678Google Scholar
  145. Engik AK, Austrheim H, Andersen TB (2000) Structural, moneralogical and petrophysical effects on deep crustal rocks of fluid-limited polymetamorphism, Western Gneiss Region, Norway. J Geol Soc Lond 157:121–134Google Scholar
  146. England PC (1979) Continental geotherms during the Archaean. Nature 277:556–558. doi: 10.1038/277556a0 Google Scholar
  147. England P, Molnar P, Richter F (2007) John Perry’s neglected critique of Kelvin’s age for the Earth: a missed opportunity in geodynamics. GSA Today 17(1):4–9Google Scholar
  148. Everett JD (1875) Illustrations of the centimeter-gram-second (C.G.S.) system of units. Phys Soc LondGoogle Scholar
  149. Everett JD (1883) Underground Temperature Committee, summary of results contained in the first fifteen reports of the, by Prof. Everett. Report of the 52 meeting of the British Association for the advancement of science, Held at Southampton. John Murray, London, pp 74–90Google Scholar
  150. Eyles N, Young GM (1994) Geodynamic controls on glaciation in Earth history. In: Deynoux M, Miller JMG, Domack EW, Eyles N, Fairchild IJ, Young GM (eds) International geological correlation program Project 260: Earth’s glacial record. Cambridge University Press, Cambridge, pp 1–28Google Scholar
  151. Fairbairn W (1861) On the temperature of earth’s crust, as exhibited by thermometrical observations obtained during the sinking of the Deep Mine in Dukinfield. Edinb Phil J XIV(New series):163–164Google Scholar
  152. Faryad SW (1999) Exhumation of the Meliata high-pressure rocks (Westerm Carpathians): petrological and structural records in blueschists. Acta Monstanistica Slovaca Ročnik 4(2):137–144Google Scholar
  153. Fegley B Jr (2000) Kinetics of gas-grain reactions in the solar nebula. Space Sci Rev 92:177–200Google Scholar
  154. Fernàmdez M, Marzám I, Correia A, Ramalho E (1998) Heat flow, heat production, and lithospheric thermal regime in the Iberian Peninsula. Tectonophysics 291:29–53Google Scholar
  155. Flasar FM, Birch F (1973) Energetics of core formation: a correction. J Geophys Res 78:6101–6103Google Scholar
  156. Forbes J (1822) On the temperature of mines. Trans R Geol Soc Cornwall 2:159–217Google Scholar
  157. Förster A, Förster H-J, Masarweh R, Masri A, Tarawneh K, DESERT Group (2007) The surface heat flow of the Arabian Shield in Jordan. J Asian Earth Sci 30(2):271–284Google Scholar
  158. Foulger GR, Jurdy DM (eds) (2007) Plates, plumes, and planetary processes. Geological Society of America, New YorkGoogle Scholar
  159. Fountain DM (1986) Is there a relationship between seismic velocity and heat production for crustal rocks? Earth Planet Sci Lett 79(1–2):145–150Google Scholar
  160. Fountain DM, Salisbury MH, Furlong KP (1987) Heat production and thermal conductivity of rocks from the Pikwitonei-Sachigo continental cross-section, central Manitoba: implications for the thermal structure of Archean crust. Can J Earth Sci 24:1583–1594Google Scholar
  161. Fourier J (1824) Remarques Générales Sur Les Températures Du Globe Terrestre Et Des Espaces Planétaires. Ann Chim Phys 27:136–167Google Scholar
  162. Fox RW (1822) On the temperature of mines. Trans R Geol Soc Cornwall 2:14–28Google Scholar
  163. Fox RW (1827) Some further observations on the temperature of mines. Trans R Geol Soc Cornwall 3:313–328Google Scholar
  164. Fox RW (1858) Report on the temperature of some deep mines in Cornwall. Report of the 27th meeting of the British Association for the advancement of science. John Murray, London, pp 11, 96–101Google Scholar
  165. Franck S (1992) Olivine flotation and crystallization of a global magma ocean. Phys Earth Planet Int 74(1–2):23–28Google Scholar
  166. Galer SJG, Mezger K (1998) Metamorphism, denudation and sea level in the Archean and cooling of the Earth. Precambr Res 92(4):389–412Google Scholar
  167. Galushkin YI, Kutas RI, Smirnov YB (1991) Heat flow and analysis of the thermal structure of the lithosphere in the European part of the USSR. In: Cermak V, Rybach L (eds) Terrestrial heat flow and the lithosphere structure. Springer, New York, pp 206–237Google Scholar
  168. Gerlich G, Tscheuschner RD (2009) Falsification of the atmospheric CO2 greenhouse effects within the frame of physics. Int J Mod Phys B 23(3):275–364Google Scholar
  169. Gilat A, Vol A (2005) Primordial hydrogen-helium degasing, an overlooked major energy source for internal processes. HAIT (Holon Academic Institute of Technology, Israel). B, 2. J Sci Eng 2(1–2):125–167Google Scholar
  170. Gillispie CC (2004) Science and polity in France: the end of the old regime. Princeton University Press, PrincetonGoogle Scholar
  171. Girdler RW (1970) A review of Red Sea heat flow. Phil Trans R Soc Lond A 267:191–203Google Scholar
  172. Glebovitskiĭ VA (1997) The early precambrian of Russia. CRC PressGoogle Scholar
  173. Gornov PY, Goroshko MV, Malyshev YF, Podgornyi VY (2009) Thermal structure of lithosphere in Central Asian and Pacific belts and their adjacent cratons, from data of geoscience transects. Russ Geol Geophys 50:485–499Google Scholar
  174. Gough DO (1981) Solar interior structure and luminosity variations. Sol Phys 74:21–34Google Scholar
  175. Graf JL Jr (1978) Rare earth elements, iron formations and seawater. Geochim Cosmochim Acta 42:1845–1863Google Scholar
  176. Gretener PE (1981) Geothermics: using temperature in hydrocarbon exploration. Short course notes, No 17. AAPG, 156 pGoogle Scholar
  177. Griggs DT (1939) A theory of mountain building. Am J Sci 237:611–650Google Scholar
  178. Grove TL, Parman SW (2004) Thermal evolution of the Earth as recorded by komatiites. Earth Planet Sci Lett 219:173–187Google Scholar
  179. Guyod H (1946) Temperature well logging. Oil Wkly 123(7):1–42Google Scholar
  180. Hales AL (1936) Convection currents in the Earth. Mon Not Roy Soc Geophys Suppl 3:372–379Google Scholar
  181. Hallam A (1989) Great geological controversies. Oxford University Press, New YorkGoogle Scholar
  182. Halliday AN (2000) Terrestrial accretion rates and the origin of the Moon. Earth Planet Sci Lett 176:17–30Google Scholar
  183. Hamilton WB (1998) Archean magmatism and deformation were not products of plate tectonics. Precambr Res 91(1–2):143–179Google Scholar
  184. Hamza VM, Muñoz M (1996) Heat flow map of South America. Geothermics 25(6):599–621Google Scholar
  185. Hamza VM, Verma RK (1969) The relationship of heat flow with the age of basement rocks. Bull Volcanol 33:123–152Google Scholar
  186. Hancock P, Skinner BJ (eds) (2000) The Oxford companion to the Earth. Oxford University Press, OxfordGoogle Scholar
  187. Hänel R, Grcnlie G, Heier KS (1979) Terrestrial heat flow determination in Norway and an attempted interpretation. In: Čermák V, Rybach L (eds) Terrestrial heat flow in Europe. Springer, Berlin, pp 232–240Google Scholar
  188. Hasterok D, Chapman DS (2007) A reference heat generation model for the continental lithosphere constrained by heat flow and elevation. AGU Transactions, Fall Meeting, Abstract #T22B-04Google Scholar
  189. Hays JF, Walker D (1975) Igneous lunar rocks and origin of Moon. In: Cosmochemistry of Moon and Planets, transaction of the Soviet-American conference on cosmochemistry of the Moon and Planets, 4–8 June 1974, Moscow. Nauka, Moscow (in Russian)Google Scholar
  190. Heier KS, Lambert IB (1978) A compilation of potassium, uranium and thorium abundances and heat production of Australian rocks. Technical report, Research School of Earth Science, Australian National University, CanberraGoogle Scholar
  191. Heizler MT, Ralser S, Karlstrom KE (1997) Late Proterozoic (Grenville?) deformation in central New Mexico determined from single-crystal muscovite 40Ar/39Ar age spectra. Precambr Res 84(1–2):1–15Google Scholar
  192. Hellman H (1998) Great feuds in science: ten of the liveliest disputes ever. Wiley, New YorkGoogle Scholar
  193. Hills JG (1973) On the process of accretion in the formation of the planets and comets. Icarus 18(3):505–522Google Scholar
  194. Höckenreiner M, Söllner F, Miller H (2003) Dating the TIPA shear zone: an early Devonian terrane boundary between the Famatinian and Pampean systems (NW Argentina). J South Am Earth Sci 16(1):45–66Google Scholar
  195. Hofmeister AM, Criss RE (2005) Earth’s heat flux revised and linked to chemistry. Tectonophysics 395:159–177Google Scholar
  196. Holland HD (1984) The chemical evolution of atmosphere and oceans. Princeton University Press, PrincetonGoogle Scholar
  197. Holm NG, Hennet RJ-C (1992) Chapter 2 Hydrothermal systems: their varieties, dynamics, and suitability for prebiotic chemistry. Orig Life Evol Biosph 22(1–4):15–31Google Scholar
  198. Holmes A (1915) Radioactivity and the Earth’s thermal history. Part II. Radioactivity and the Earth as a cooling body. Geol Mag 6:102–112Google Scholar
  199. Holmes A (1916) Radioactivity and the Earth’s thermal history. Part III. Radioactivity and isostasy. Geol Mag 6:265–274Google Scholar
  200. Holmes A (1925) Radioactivity and the earth’s thermal history. Part. IV. A criticism of Parts I, II and III. Geol Mag 62:504–515Google Scholar
  201. Holmes A (1930) Radioactivity and geology. Trans Edinb Geol Soc 12:281–283Google Scholar
  202. Holmes A (1931) Radioactivity and earth movements. Nature 128:496Google Scholar
  203. Hu S, He L, Wang J (2000) Heat flow in the continental area of China: a new data set. Earth Planet Sci Lett 179:407–419Google Scholar
  204. Humayun M, Cassen P (2000) Processes determining the volatile abundances of the meteorites and terrestrial planets. In: Canup RM, Righter K et al (eds) Origin of the Earth and Moon. University of Arizona Press, Tucson, pp 3–23Google Scholar
  205. Hurtig E, Schrötter J, Grosswig S, Kühn K, Harjes B, Wieferig W (1992) Temperaturmessungen in Bohrlöchem mit Hilfe optischer Fasern. In: Forum für Zukunftsenergien e.V., Geothermische Vereinigung e.V., Geothermische Fachtagung 1992, Tagungsband, Bonn, pp 311–324Google Scholar
  206. Huston DL, Logan GA (2004) Barite, BIFs and bugs: evidence for the evolution of the Earth’s early hydrosphere. Earth Planet Sci Lett 220:41–55Google Scholar
  207. Jacobsen SB (2005) The Hf-W isotopic system and the origin of the Earth and Moon. Ann Rev Earth Planet Sci 33:531–570Google Scholar
  208. Jakosky BM (1999) Atmospheres of the terrestrial planets. In: Beatty JK, Petersen CC, Chaikin A (eds) The new Solar System, 4th edn. Cambridge University Press, Cambridge, pp 175–191Google Scholar
  209. James FAJL (1982) Thermodynamics and sources of solar heat, 1846–1862. Brit J Hist Sci 15:155–181Google Scholar
  210. Jarvis GT, Campbell IH (1983) Archean komatiites and geotherms—Solution to an apparent contradiction. Geophys Res Lett 10:1133–1136Google Scholar
  211. Jaupart C, Mareschal J-C (1999) The thermal structure of continental roots. Lithos 48:93–114Google Scholar
  212. Jaupart C, Mareschal J-C (2003) Constraints on crustal heat production from heat flow data. In: Rudnick R (ed) Treatise of geochemistry, vol 3, The Crust. Elsevier, New York, pp 65–84Google Scholar
  213. Jaupart C, Mareschal J-C (2007) Heat flow and thermal structure of the lithosphere. In: Schubert G (ed) Treatise of geophysics, vol 6. Elsevier, Oxford, pp 217–252Google Scholar
  214. Jaupart C, Labrosse S, Mareschal JC (2007) Temperatures, heat and energy in the mantle of the Earth. In: Bercovici D, Schubert G (eds) Treatise on geophysics, vol 7, Mantle dynamics, Chap 7.06. Elsevier, Amsterdam, pp 253–303Google Scholar
  215. Jeffreys H (1924) The Earth, its origin, history and physical constitution. Cambridge University Press, CambridgeGoogle Scholar
  216. Jeffreys H (1929) The early history of the Solar System on the collision theory. Mon Not R Astron Soc 89:731–739Google Scholar
  217. Jeffreys H (1930) The instability of a compressible fluid heated below. Proc Camb Philos Soc 26:170–172Google Scholar
  218. Jeffreys H (1952). The Earth: its origin, history and physical constitution, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  219. Jeffreys H (1962) The Earth: its origin, history and physical constitution, 4th edn. Cambridge University Press, CambridgeGoogle Scholar
  220. Jeffreys H (1970) The Earth: its origin, history and physical constitution, 5th edn. Cambridge University Press, CambridgeGoogle Scholar
  221. Jochum KP, Hofmann AW, Ito E, Seufert HM, White WM (1983) K, U and Th in mid-ocean ridge basalt glasses and heat production, K/U and K/Rb in the mantle. Nature 306:431–436Google Scholar
  222. Johnson EA, Rossman GR, Dyar MD, Valley JW (2002) Correlation between OH concentration and oxygen isotope diffusion rate in diopsides from the Adirondack Mountains, New York. Am Mineral 87:899–908Google Scholar
  223. Johnson SP, Cutten HNC, Muhongo S, De Waele B (2003) Neoarchaean magmatism and metamorphism of the western granulites in the central domain of the Mozambique belt, Tanzania: U-Pb shrimp geochronology and PT estimates. Tectonophysics 375:125–145Google Scholar
  224. Johnsson MJ (1985) Late paleozoic-middle Mesozoic uplift rate, cooling rate and geothermal gradient for south-central New York State. Nucl Tracks Radiat Meas 10(3):295–301Google Scholar
  225. Joly J (1909) Radioactivity and geology: an account of the influence of radioactive energy on terrestrial history. Archibald Constable & Co., Ltd, LondonGoogle Scholar
  226. Jones MQW (1987) Heat flow and heat production in the Namaqua mobile belt, South Africa. J Geophys Res 92:6273–6289Google Scholar
  227. Jones FW, Majorowicz JA, Dietrich J (1988) The geothermal regime of the northern Yukon and Mackenzie delta regions of northwest Canada—Studies of two regional profiles. Pure Appl Geophys 127(4):641–658Google Scholar
  228. Jorden JR, Campbell FL (1984) Well logging I—Rock properties, Borehole Environment, Mud and Temperature Logging. Monograph Ser 9. SPE of AIME, New York, DallasGoogle Scholar
  229. Kaler JB (1994) Astronomy!. HarperCollins College Publications, New YorkGoogle Scholar
  230. Kant I (1755) Allgemeine Naturgeschichte und Theorie des Himmels. Johann Friederich Petersen, Königsberg und LeipzigGoogle Scholar
  231. Kappelmeyer O, Hänel R (1974) Geothermics with special reference to application. Gebruder Borntrargen, Berlin, StutgartGoogle Scholar
  232. Karg H, Carter A, Brix MR, Littke R (2005) Late- and post-Variscan cooling and exhumation history of the northern Rhenish massif and the southern Ruhr Basin: New constraints from fission-track analysis. Int J Earth Sci 94(2):180–192Google Scholar
  233. Kasting JF, Donahue TM (1981) Evolution of oxygen and ozone in the Earth’s atmosphere. In: Billingham J (ed) Life in the universe. MIT Press, Cambridge, pp 149–162Google Scholar
  234. Kaufmann WJ III (1994) Universe, 4th edn. Freeman & Co., New YorkGoogle Scholar
  235. Kaufmann WJ III, Freedman RA (1999) Universe, 5th edn. Freeman & Co., New YorkGoogle Scholar
  236. Kaula WM (1979) Thermal evolution of the Earth and Moon growing by planetesimal impacts. J Geophys Res 84:999–1008Google Scholar
  237. Kelvin WT (1863). On the secular cooling of the Earth. Phil Mag 25(Series 4):1–14Google Scholar
  238. Kelvin WT (1864) On the secular cooling of the Earth. Excerpt. Trans R Soc Edinb, XXIII, pp 167–169Google Scholar
  239. Kelvin WT (1866) The “Doctrine of Uniformity” in geology briefly refuted. Proc R Soc Edinb 5:512–513Google Scholar
  240. Kelvin WT (1895) On the age of the earth. Nature 51:438–440Google Scholar
  241. Kelvin WT (1899) The age of the earth as an abode fitted for life. J Trans Victoria Inst 31:11–35Google Scholar
  242. Kelvin WT, Murray JR (1885a) On the temperature variation of the thermal conductivity of rocks. Science 2(31):129–130Google Scholar
  243. Kelvin WT, Murray JRE (1885) On the temperature variation of the thermal conductivity of rocks. Proc R Soc Lond 58:162–167Google Scholar
  244. Kerimov KM, Pilchin AN, Gadzhiev TG, Buachidze GY (1989) Geothermal map of the Caucasus, Scale 1:1,000,000. Baku, Cartographic Plant No. 11 (in Russian)Google Scholar
  245. Kern H, Siegesmund S (1989) A test of the relationship between seismic velocity and heat production for crustal rocks. Earth and Planet Sci Lett 92(1):89–94Google Scholar
  246. Kerridge JF (1977) Iron: whence it came, where it went. Space Sci Rev 20(1):3–68Google Scholar
  247. Ketcham RA (1996) Distribution of heat-producing elements in the upper and middle crust of southern and west central Arizona: evidence from the core complexes. J Geophys Res 101:13611–13632Google Scholar
  248. Kircher A (1665) Mundus Subterraneus in XII Libros Digestus. Joanne Jansson et Elize Weyerstraten, AmsterdamGoogle Scholar
  249. Klein C, Beukes NJ (1992) Time distribution, stratigraphy, sedimentologic setting, and geochemistry of Precambrian iron-formations. In: Schopf JW, Klein C (eds) The proterozoic biosphere. Cambridge University Press, Cambridge, pp 139–146Google Scholar
  250. Kleine T, Münker C, Mezger K, Palme H (2002) Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418(6901):952–955Google Scholar
  251. Knauth LP (2005) Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeogr Palaeoclimatol Palaeoecol 219(1–2):53–69Google Scholar
  252. Knauth LP, Lowe DR (2003) High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. GSA Bull 115(5):566–580Google Scholar
  253. Knight C (ed) (1866) The English cyclopaedia, vol 1. Bradbury and Evans, LondonGoogle Scholar
  254. Koeberl Ch (2006) Impact processes on the early Earth. Elements 2(4):211–216Google Scholar
  255. Kohman TP (1997) Aluminum-26: a nuclide for all seasons. J Radioanal Nucl Chem 219(2):165–176Google Scholar
  256. Korenaga J (2006) Archean geodynamics and the thermal evolution of Earth. In: Benn K, Mareschal J-C, Condie KC (eds) Archean geodynamics and environments. Geophys Monogr Ser 164:7–32. AGU, Washington, DCGoogle Scholar
  257. Kremenentsky AA, Milanovsky SY, Ovchinnikov LN (1989) A heat generation model for the continental crust based on deep drilling in the Baltic Shield. Tectonophysics 159:231–246Google Scholar
  258. Kröner A (1982) Archaean to early Proterozoic tectonics and crustal evolution: a review. Rev Bras Geociências 12:15–31Google Scholar
  259. Kröner A, Collins AS, Hegner E, Muhongo S, Willner AP, Kehelpannala KVW (2001) Has the East African orogen played any role in the formation and breakup of the Supercontinent Rodinia and the amalgamation of Gondwana? New evidence from field relationship and isotopic data. Gondwana Res 4(4):669–671Google Scholar
  260. Kuhn WR, Walker JC, Marshall HG (1989) The effect on Earth’s surface temperature from variations in rotation rate, continent formation, solar luminosity, and carbon dioxide. J Geophys Res 94(D8):11129–11136Google Scholar
  261. Kukkonen IT, Jõeleht A (1996) Geothermal modelling of the lithosphere in the central Baltic Shield and its southern slope. Tectonophysics 255:25–45Google Scholar
  262. Kukkonen IT, Lahtinen R (2001) Variation of radiogenic heat production rate in 2.8–1.8 Ga old rocks in the central Fennoscandian Shield. Phys Earth Planet Int 126(3–4):279–294Google Scholar
  263. Kukkonen IT, Peltoniemi S (1998) Relationships between thermal and other petrophysical properties of rocks in Finland. Phys Chem Earth 23(3):341–349Google Scholar
  264. Kukkonen IT, Peltonen P (1999) Xenolith-controlled geotherm for the central Fennoscandian Shield: implications for lithosphere–asthenosphere relations. Tectonophysics 304:301–315Google Scholar
  265. Kukkonen IT, Golovanova YV, Druzhinin VS, Kosarev AM, Schapov VA (1997) Low geothermal heat flow of the Urals fold belt: Implication of low heat production, fluid circulation or paleoclimate. Tectonophysics 276:63–85Google Scholar
  266. Kukkonen IT, Gosnold WD, Safanda J (1998) Anomalously low heat flow density in eastern Karelia, Baltic Shield: a possible palaeoclimatic signature. Tectonophysics 291:235–249Google Scholar
  267. Kumar PS, Menon R, Reddy GK (2007a) Crustal geotherm in southern Deccan basalt province, India: The Moho is as cold as adjoining cratons. GSA Spec Papers 430:275–284Google Scholar
  268. Kumar PS, Menon R, Reddy GK (2007b) The role of radiogenic heat production in the thermal evolution of a Proterozoic granulite-facies orogenic belt: Eastern Ghats, Indian Shield. Earth Planet Sci Lett 254(1–2):39–54Google Scholar
  269. Kumar PS, Menon R, Reddy GK (2009) Heat production heterogeneity of the Indian crust beneath the Himalaya: insights from the northern Indian Shield. Earth Planet Sci Lett 283(1–4):190–196Google Scholar
  270. Kutas RI (1979) A geothermal model of the Earth’s crust on the territory of the Ukrainian Shield. In: Cermak V, Rybach L (eds) Terrestrial heat flow in Europe. Springer, Berlin, pp 309–315Google Scholar
  271. Kutas RI (1984) Heat flow, radiogenic heat production, and crustal thickness in southwest USSR. Tectonophysics 103:167–174Google Scholar
  272. Kutas RI, Gordienko VV (1971) Heat flow of the Ukraine. Naukova Dumka, Kiev (in Russian)Google Scholar
  273. Kutas RI, Bevzyuk MI, Vigovsky VF, Mikhaylyuk SF (1979) Investigation of geologic origin of heat field heterogeneities. Report on problem No 39-76-102/3. Institute of Geophysics, Ukrainian Academy of Science, Kiev (in Russian)Google Scholar
  274. Kutas RI, Kobolev VP, Tsvyashchenko VA (1998) Heat flow and geothermal model of the Black Sea depression. Tectonophysics 291:91–100Google Scholar
  275. Labrosse S, Jaupart C (2007) The thermal evolution of the Earth: Long term and uctuations. Earth Planet Sci Lett 260(3–4):465–481Google Scholar
  276. Labrosse S, Hernlund JW, Coltice N (2007) A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450:866–869Google Scholar
  277. Lachenbruch AH (1968) Preliminary geothermal model for the Sierra Nevada. J Geophys Res 73:6977–6989Google Scholar
  278. Lachenbruch AH (1970) Crustal temperature and heat production: Implications of the linear beat-flow relation. J Geophys Res 75:3291–3300Google Scholar
  279. Lachenbruch AH (1971) Vertical gradients of heat production in the continental crust. Theoretical detectability from nearsurface measurements. J Geophys 17:3842–3851Google Scholar
  280. Lachenbruch AH, Sass JH, Galanis SP Jr (1985) Heat flow in Southernmost California and the origin of the salton trough. J Geophys Res 90:6709–6736Google Scholar
  281. Lake P (1922) Wegener’s displacement theory. Geol Mag 59(8):338–346Google Scholar
  282. Lambert RSJ (1976) Archean thermal regimes, crustal and upper mantle temperatures, and a progressive evolutionary model for the Earth. In: Windley BF (ed) The early history of the Earth. Wiley, London, pp 363–373Google Scholar
  283. Lambert IB (1982) Early geobiochemical evolution of the Earth. Rev Bras Geociências 12:32–38Google Scholar
  284. Landstrom O, Larson SA, Lind G, Malmqvist D (1980) Geothermal investigations in the Bohus granite area in southwestern Sweden. Tectonophysics 64:131–162Google Scholar
  285. Langseth MG, Anderson RN (1979) Correction. J Geophys Res 84:1139–1140Google Scholar
  286. Laplace PS (1799–1825) Traite de Mecanique Celeste. 5 volumes (vols I–II, 1799, vol III, 1802, vol IV, 1805, and vol V, 1825), Bachelier, ParisGoogle Scholar
  287. Lauretta DS, Nagahara H, Alexander CM O’D (2006) Petrology and origin of ferromagnesian silicate chondrules. In: Lauretta DS, McSween Jr HY (eds) Meteorites and the Early Solar System II. University of Arizona Press, Tucson, pp 431–459Google Scholar
  288. Lebour GA (1882) On the present state of our knowledge of underground temperature. Trans Engl Inst Min Mech Eng 31:59–71Google Scholar
  289. Lee WHK (1970) On the global variations of terrestrial heat-flow. Phys Earth Planet Int 2:332–341Google Scholar
  290. Lee WHK, Uyeda S (1965) Review of heat flow data. In: Lee WHK (ed) Terrestrial heat flow. Geophys Monogr 8:87–190. AGU, Washington, DCGoogle Scholar
  291. Lee MK, Brown GC, Webb PC, Wheildon J, Rollin KE (1987) Heat flow, heat production and thermotectonic setting in mainland UK. J Geol Soc Lond 144:35–42Google Scholar
  292. Lee C-TA, Lenardic A, Thiagarajan N, Agranier A, O’Neill CJ, Yin Q-Z (2006) Remnant iron oxide/sulfide mattes from a Hadean magma ocean at the core–mantle boundary: Insights from a small scale post-Archean analog. Geochim Cosmochim Acta 70(18, Suppl. 1):A347Google Scholar
  293. Leech ML, Ernst WG (2000) Petrotectonic evolution of the high- to ultrahigh-pressure Maksyutov Complex, Karayanova area, south Ural Mountains: structural and oxygen isotope constraints. Lithos 52:235–252Google Scholar
  294. Leibniz GW (1749) Protogaea. I.G. Schmidii. Goettingae, Sumptibus Ioh. Guil. SchmidiiGoogle Scholar
  295. Lenardic A, Guillou-Frottier L, Mareschal J-C, Jaupart C, Moresi L-N, Kaula WM (2000) What the mantle sees: the effects of continents on mantle heat flow. In: Richards MA, Gordon RG, Van Der Hilst RD (eds) The history and dynamics of global plate motions. Geophys Monogr 121:95–112. AGU, Washington, DCGoogle Scholar
  296. Lenkey L, Dövényi P, Horváth F, Cloetingh SAPL (2002) Geothermics of the Pannonian basin and its bearing on the neotectonics. EGU Stephan Mueller Spec Publ Ser 3:29–40Google Scholar
  297. Lenton TM (1998) Gaia and natural selection. Nature 394(6692):439–447Google Scholar
  298. Levin BYu, Mayeva SV (1960) About thermic history of the Earth. Izv Acad Sci USSR Ser Geophys 2:243–252Google Scholar
  299. Lewis JS (1974) The temperature gradient in the solar nebula. Science 186:440–443Google Scholar
  300. Lewis CL (2000) The dating game: one man’s search for the age of the Earth. Cambridge University Press, CambridgeGoogle Scholar
  301. Lewis CLE (2002) Arthur Holmes’ unifying theory: from radioactivity to continental drift. Geol Soc Lond Spec Publ 192:167–183Google Scholar
  302. Lewis TJ, Hyndman RD, Fluck P (2003) Heat flow, heat generation and crustal temperatures in the northern Canadian cordillera: thermal control on tectonics. J Geophys Res 108:B6. doi: 10.1029/2002JB002090 Google Scholar
  303. Li J, Agee CB (1996) Geochemistry of mantle-core differentiation at high pressure. Nature 381:686–689Google Scholar
  304. Lide DR (ed) (2005) CRC handbook of chemistry and physics, 86th ednGoogle Scholar
  305. Loaiciga HA, Valdes JB, Vogel R, Garvey J, Schwarz H (1996) Global warming and the hydrologic cycle. J Hydrol 174:83–127Google Scholar
  306. Louden KE, Mareschal J-C (1996) Measurements of radiogenic heat production on basement samples from sites 897 and 9001. In: Whitmarsh RB, Sawyer DS, Klaus A, Masson DG (eds) Proceedings of the Ocean drilling program, scientific results, vol 14, p 44Google Scholar
  307. Louden KE, Sibuet J-C, Harmegnies F (1997) Variations in heat flow across the ocean—continent transition in the Iberia abyssal plain. Earth Planet Sci Lett 151(3–4):233–254Google Scholar
  308. Lowe DR, Tice MM (2004) Geologic evidence for Archean atmospheric and climatic evolution: Fluctuating levels of CO2, CH4, and O2 with an overriding tectonic control. Geology 32(6):493–496Google Scholar
  309. Lubimova EA (1953) Role of diffusivity in heat regime of Earth. Izv Acad Sci USSR Ser Geophys (6)Google Scholar
  310. Lubimova EA (1955) About heating of Earth’s deeps during the process of Earth formation. Izv Acad Sci USSR Ser Geophys 5:416–424 (in Russian)Google Scholar
  311. Lubimova EA (1958) Thermal history of the earth with consideration of the variable thermal conductivity of the mantle. Geophysics 1:115–134Google Scholar
  312. Lubimova EA (1967) Theory of thermal state of the Earth’s mantle. In: Gaskell TF (ed) The Earth’s mantle. Academic Press, London, pp 231–323Google Scholar
  313. Lubimova EA (1968a) Thermal history of the Earth. In: The Earth’s crust and upper mantle. Geophys Monogr Ser 13:63–77. American Geophysical Union, Washington, DCGoogle Scholar
  314. Lubimova EA (1968b) Thermics of the Earth and Moon. Nauka, Moscow (in Russian)Google Scholar
  315. Lubimova EA, Firsov FV (1966) Determination of heat flow in some areas of Middle Asia. In: Chitarov NI (ed) Problems of deep heat flow. Nauka, Moscow, pp 88–105 (in Russian)Google Scholar
  316. Lubimova EA, Mayeva SV (1982) Models of the thermal evolution of the Earth. Izv Acad Sci USSR Ser Geophys (6):83–93Google Scholar
  317. Lubimova EA, Lusova LN, Firsov FV (1964) Basics of heat flow from Earths depths determination and results of measurements. In: Geothermal researches, Nauka, Moscow, pp 5–103 (in Russian)Google Scholar
  318. Lysak SV, Sherman SI (2002) Terrestrial heat flow in areas of dynamic influence of faults in the Baikal rift zone. EGU Stephan Mueller Spec Publ Ser 2:153–160Google Scholar
  319. MacDonald GJF (1959) Calculations on the thermal history of the Earth. J Geophys Res 64:1967–2000Google Scholar
  320. MacDonald GJF (1962) The Moon and its interior. Astronautics 7(7):14–18Google Scholar
  321. Mackenzie FT (1998) Our changing planet: an introduction to earth system science and global environmental change. Prentice-Hall, Englewood CliffsGoogle Scholar
  322. Majorowicz J (1978) Mantle heat flow and geotherms for major tectonic units in central Europe. Pure Appl Geoph 117(1–2):109–123Google Scholar
  323. Marakushev AA (1999). The origin of Earth and Nature of its endogenic activity. Moscow (in Russian)Google Scholar
  324. Mareschal J-C (2010) Interactive comment on “Earth’s surface heat flux” by JH Davies and DR Davies. Solid Earth Discuss 1:C7–C9Google Scholar
  325. Mareschal J-C, Jaupart C (2006) Archean thermal regime and stabilization of the cratons. Geophys Monogr 164:61–73Google Scholar
  326. Mareschal J-C, Jaupart C, Gariépy C, Cheng L-Z, Guillou-Frottier L, Bienfait G, Lapointe R (2000a) Heat flow and deep thermal structure near the edge of the Canadian Shield. Can J Earth Sci 37:399–414Google Scholar
  327. Mareschal JC, Poirier A, Rolandone F, Bienfait G, Gariéepy C, Lapointe R, Jaupart C (2000b) Low mantle heat flow at the edge of the North American continent, Voisey Bay, Labrador. Geophys Res Lett 27(6):823–826Google Scholar
  328. Mareschal JC, Nyblade A, Perry HKC, Jaupart C, Bienfait G (2004) Heat flow and deep lithospheric thermal structure at Lac de Gras, Slave Province, Canada. Geophys Res Lett 31:L12611Google Scholar
  329. Marshall J, Cuzzi J (2001) Electrostatic enhancement of coagulation in protoplanetary nebulae. Transaction of the 32nd Lunar Planetary Science Conference, Houston, Texas, Abstract 1262Google Scholar
  330. Marshall JS, Pounder ER, Stewart RW (1967) Physics. Macmillan of Canada, TorontoGoogle Scholar
  331. Martignole J, Reynolds P (1997) 40Ar/39Ar thermochronology along a western Québec transect of the Grenville Province, Canada. J Metamorph Geol 15(2):283–296Google Scholar
  332. Marty B, Meibom A (2007) Noble gas signature of the Late Heavy Bombardment in the Earth’s atmosphere. eEarth 2:43–49Google Scholar
  333. Mayer JR (1848) Beiträge zur Dynamik des Himmels in populärer Darstellung. Heilbronn, LandherrGoogle Scholar
  334. Mayer JR (1867) Die Mechanik der Wärme in gesammelten Schriften. Stuttgart CottaGoogle Scholar
  335. McCall GJ (1973) Meteorites and their origins. Wiley, New YorkGoogle Scholar
  336. McCrea WH (1960) The origin of the Solar System. Proc R Soc Lond A 256:245–266Google Scholar
  337. McKenzie DP (1978) Active tectonics of the Alpine-Himalayan Belt: the Aegean Sea and surrounding regions. Geophys J Roy Astron Soc 55:217–254Google Scholar
  338. McLaren S, Sandiford M, Hand M, Neumann N, Wyborn N, Bastrakova I (2002) The hot southern continent: heat flow and heat production in Australian Proterozoic terranes, Chap 12, vol 22. Geological Society of Australia Special Publication, pp 151–161Google Scholar
  339. McLaren S, Sandiford M, Hand M, Neumann N, Wyborn N, Bastrakova I (2003) The hot southern continent: heat flow and heat production in Australian Proterozoic terranes. GSA Spec Pap 372:157–167Google Scholar
  340. McLaren S, Sandiford M, Powell R, Neumann N, Woodhead J (2006) Palaeozoic intraplate crustal anatexis in the Mount Painter Province, South Australia: timing, thermal budgets and the role of crustal heat production. J Petrol 47(12):2281–2302Google Scholar
  341. McLennan SM, Taylor SR, Hemming SR (2006) Composition, differentiation, and evolution of continental crust: constraints from sedimentary rocks and heat flow. In: Brown M, Rushmer T (eds) Evolution and differentiation of the continental crust. Cambridge University Press, Cambridge, pp 92–134Google Scholar
  342. McSween HY Jr (1993) Stardust to planets. St. Martin’s Griffin, New YorkGoogle Scholar
  343. McSween HY (1999) Meteorites and their planet parents, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  344. Meert JG, Nédélec A, Hall C (2003) The stratoid granites of central Madagascar: paleomagnetism and further age constraints on neoproterozoic deformation. Precambr Res 120(1–2):101–129Google Scholar
  345. Mekhtiev ShF, Mirzajanzadeh AKh, Aliyev SA (1971) Geothermal investigation of oil and gas fields. Nedra, Moscow (in Russian)Google Scholar
  346. Melosh HJ (1990) Giant impacts and the thermal state of the early Earth. In: Newsom H, Jones J (eds) Origin of the Earth. Oxford University Press, Oxford, pp 69–83Google Scholar
  347. Mezger K, Hanson GN, Bohlen SR (1989) High-precision U-Pb ages of metamorphic rutile: application to the cooling history of high-grade terranes. Earth Planet Sci Lett 96(1–2):106–118Google Scholar
  348. Mezger K, Rawnsley CM, Bohlen SR, Hanson GN (1991) U-Pb garnet, sphene, monazite, and rutile ages: Implications for the duration of high grade metamorphism and cooling histories, Adirondack Mts, New York. J Geol 99:415–428Google Scholar
  349. Michaut Ch, Jaupart C, Mareschal J-C (2009) Thermal evolution of cratonic roots. Lithos 109:47–60Google Scholar
  350. Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4.300 Myr ago. Nature 409:178–181Google Scholar
  351. Monin AS (1977) History of the Earth. Nauka, Leningrad (in Russian)Google Scholar
  352. Morgan P (1985) Crustal radiogenic heat production and the selective survival of ancient continental crust. J Geophys Res 90(Suppl):C561–C570Google Scholar
  353. Morgan P, Swanberg ChA (1978) Heat flow and the geothermal potential of Egypt. Pure Appl Geophys 117:213–226Google Scholar
  354. Morris RG, Sinclair HD, Yelland AJ (1998) Exhumation of the Pyrenean orogen: implications for sediment discharge. Basin Res 10:69–85Google Scholar
  355. Morse JW, Mackenzie FT (1998) Hadean Ocean carbonate geochemistry. Aquat Geochem 4(3–4):301–319Google Scholar
  356. Mottaghy D, Schellschmidt R, Popov YA, Clauser C, Kukkonen IT, Nover G, Milanovsky S, Romushkevich RA (2005) New heat flow data from the immediate vicinity of the Kola super-deep borehole: Vertical variation in heat flow confirmed and attributed to advection. Tectonophysics 401:119–142Google Scholar
  357. Mposkos E, Perraki M (2001) High pressure Alpine metamorphism of the pelagonian allochton in the Kastania area (Southern Vermion), Greece. Bull Geol Soc Greece V:XXXIV/3, 939–947Google Scholar
  358. Mukhin LM, Pimenov KYu (2002) Impact hot spots on the cold surface of the early Earth. Planet Space Sci 50(1):41–43Google Scholar
  359. Muñoz M (2005) Approaches to the relatively hot Altiplano plateau. In: Proceedings of the 6th international symposium on Andean geodynamics, Barcelona, pp 544–547Google Scholar
  360. Nagatha T (1961) Rock magnetism. Maruzen Co., TokyoGoogle Scholar
  361. Nagihara S, Jones KO (2005) Geothermal heat flow in the northeast margin of the Gulf of Mexico. AAPG Bull 89(6):821–831Google Scholar
  362. Nakazawa K, Ida S, Ohtsuki K (1993) Elementary processes in planetary accretion. In: Oya H (ed) Primitive solar nebula and origin of planets. Terra Scientific Publishing Company, Tokyo, pp 265–280Google Scholar
  363. Neumann N, Sandiford M, Foden J (2000) Regional geochemistry and continental heat flow: implications for the origin of the South Australian heat flow anomaly. Earth Planet Sci Lett 183(1–2):107–120Google Scholar
  364. Newman MJ, Rood RT (1977) Implications of solar evolution for the Earth’s early atmosphere. Science 198:1035–1037Google Scholar
  365. Norden B, Förster A, Balling N (2009) What causes the increased heat flow of the Northeast German Basin? EGU General Assem. 2009, Geophys Research Abstracts, vol 11, EGU2009-8358Google Scholar
  366. Norman MD, Borg LE, Nyquist LE, Bogard DD (2003) Chronology, geochemistry, and petrology of a ferroan noritic anorthosite clast from Descartes breccia 67215: clues to the age, origin, structure, and impact history of the lunar crust. Meteor Planet Sci 38:645–661Google Scholar
  367. Norris TL, Gancarz AJ, Rokop DJ, Thomas KW (1983) Half-life of Al-26. J Geophys Res 88(Suppl):B331–B333Google Scholar
  368. NRC—National Research Council (1964) Solid-earth geophysics: survey and outlook. National Research Council (U.S.). Panel on solid earth problems, Washington, National Academy of Science Publications, No. 1231Google Scholar
  369. Nyblade AA, Pollack HN (1993) A global analysis of heat flow from Precambrian terrains: implications for the thermal structure of Archean and Proterozoic lithosphere. J Geophys Res 98(B7):12207–12218Google Scholar
  370. Nyblade AA, Pollack HN, Jones DL, Podmore F, Mushayandebvu M (1990) Terrestrial heat flow in East and Southern Africa. J Geophys Res 95(B11):17371–17384Google Scholar
  371. Ohtani E (1985) The primordial terrestrial magma ocean and its implication for stratification of the mantle. Phys Earth Planet Int 38:70–80Google Scholar
  372. Ohtani E, Hirao N, Kondo T, Ito M, Kikegawa T (2005) Iron-water reaction at high pressure and temperature, and hydrogen transport into the core. Phys Chem Minerals 32(1):77–82Google Scholar
  373. Okuchi T (1997) Hydrogen partitioning into molten iron at high pressure: implications for Earth’s core. Science 278:1781–1784Google Scholar
  374. Okuchi T (1998) The melting temperature of iron hydride at high pressures and its implications for the temperature of the Earth’s core. J Phys Condens Matter 10:11595–11598Google Scholar
  375. Okudaira T, Hayasaka Y, Himeno O, Watanabe K, Sakurai Y, Ohtomo Y (2001) Cooling and inferred exhumation history of the Ryoke metamorphic belt in the Yanai district, south-west Japan: Constraints from Rb–Sr and fission-track ages of gneissose granitoid and numerical modelling. I Arc 10(2):98–115Google Scholar
  376. Olby RC (1996) Companion to the history of modern science. Routledge, LondonGoogle Scholar
  377. Ollinger D, Baujard C, Kohl T, Moeck I (2010) Temperature inversion derived from deep borehole data in the Northeastern German Basin. Geothermics 39:46–58Google Scholar
  378. Omar GI, Onstott TC, Hoek J (2003) The origin of deep subsurface microbial communities in the Witwatersrand Basin, South Africa as deduced from apatite fission track analyses. Geofluids 3(1):69–80Google Scholar
  379. Omori S, Komabayashi T (2007) Subduction zone: the water channel to the mantle. In: Yuen DA, Maruyama S, Karato S-I, Windley BF (eds) Superplumes: beyond plate tectonics, Part II. Springer, New York, pp 113–138Google Scholar
  380. Oreskes N (1999) The rejection of continental drift: theory and method in American Earth Science. Oxford University Press, OxfordGoogle Scholar
  381. Orlyonok VV (1980) Physical basics of Earth’s perispher evolution. Leningrad State University, Leningrad (in Russian)Google Scholar
  382. Orlyonok VV (2000) Foundations of geophysics. Kaliningrad (in Russian)Google Scholar
  383. Osako M, Ito E, Yoneda A (2001) Thermal diffusivity and thermal conductivity of olivine and garnet under pressures up to 8 GPa and at temperatures up to 1000 K. In: Proceedings of the conference “Transport of materials in the dynamic Earth”, Kurayoshi, Japan, 3.17, pp 83–85Google Scholar
  384. Pavlov AA, Kasting JF, Brown LL, Rages KA, Freedman R (2000) Greenhouse warming by CH4 in the atmosphere of early Earth. J Geophys Res 105(E5):11981–11990Google Scholar
  385. Pechersky DM, Bagin VI, Brodskaya SY, Sharonov ZV (1975) Magnetism and conditions of generation for igneous mountainous rocks. Nauka, Moscow (in Russian)Google Scholar
  386. Peck WH, Valley JW, Wilde SA, Graham CM (2001) Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: ion microprobe evidence for high δ18O continental crust and oceans in the Early Archean. Geochim Cosmochim Acta 65(22):4215–4229Google Scholar
  387. Peck WH, Valley JW, Graham CM (2003) Slow oxygen diffusion rates in igneous zircons from metamorphic rocks. Am Mineral 88(7):1003–1014Google Scholar
  388. Pekeris CL (1935) Thermal convection in the interior of the Earth. Mon Not R Astron Soc Geophys Suppl 3:343–367Google Scholar
  389. Perraki M, Mposkos E (2001) New constraints for the Alpine HP metamorphism of the Ios basement, Cyclades, Greece. Bull Geol Soc Greece XXXIV/3:977–984Google Scholar
  390. Petterson H (1949) Exploring the bed of the ocean. Nature (4168):468–470Google Scholar
  391. Pfister M, Rybach L, Simsek S (1998) Geothermal reconnaissance of the Marmara Sea region (NW Turkey): surface heat flow density in an area of active continental extension. Tectonophysics 291:77–89Google Scholar
  392. Pilchin A (1983) Geothermal regime of Earth’s crust of the Kura depression and its influence on pressure distribution in it. PhD Thesis, Institute of Geophysics of the Georgia Academy of Sciences, Tbilisi (in Russian)Google Scholar
  393. Pilchin AN (1985) On the origin of mud volcanoes. Sov Geol (Sovetskaia Geologiya) 10:78–81 (in Russian)Google Scholar
  394. Pilchin AN (2011) Magnetite: the story of the mineral’s formation and stability. In: Angrove DM (ed) Magnetite: structure, properties and applications, Chap 1. Nova Science Publishers, New York, pp 1–99Google Scholar
  395. Pilchin AN, Eppelbaum LV (2006) Iron and its unique role in earth evolution. In: Monograph, vol 9. Mexican Geophysical SocietyGoogle Scholar
  396. Pilchin AN, Eppelbaum LV (2007) Stability of iron oxides in the Earth and their role in the formation of rock magnetism. Acta Geofis 55(2):133–153Google Scholar
  397. Pilchin AN, Eppelbaum LV (2008a) Iron content of magmatic rocks as a marker of mantle heterogeneity. Transactions of the 33rd international geological conference, Oslo, Norway, EID05421PGoogle Scholar
  398. Pilchin AN, Eppelbaum LV (2008b) Some causes of initial mantle heterogeneity. Transactions of the 33rd international geological conference, Oslo, Norway, EID05422PGoogle Scholar
  399. Pilchin AN, Eppelbaum LV (2009) The early earth and formation of the lithosphere. In: Anderson JE, Coates RW (eds) The lithosphere: geochemistry, geology and geophysics, Chap 1. Nova Science Publishers, New York, pp 1–68Google Scholar
  400. Pilchin A, Eppelbaum L (2012) The early Earth formation and evolution of the lithosphere in the Hadean–Middle Archean. In: Sato F, Nakamura S (eds) Encyclopedia of earth science research, vol 1, Chap 1, pp 1–93Google Scholar
  401. Pinet C, Jaupart C (1987) The vertical distribution of radiogenic heat production in the Precambrian crust of Norway and Sweden: geothermal implications. Geophys Res Lett 14(3):260–263Google Scholar
  402. Pollack HN (1980) The heat flow from the earth: a review. In: Davies PA, Runcorn SK (eds) Mechanisms of continental drift and plate tectonics. Academic Press, London, pp 183–192Google Scholar
  403. Pollack HN (1982) The heat flow from the Continents. Ann Rev Earth Planet Sci 10:459–481Google Scholar
  404. Pollack HN (1997) Thermal characteristics of the Archaean. In: de Wit MJ, Ashwal MD (eds) Greenstone belts. Clarendon Press, Oxford, pp 223–232Google Scholar
  405. Pollack HN, Chapman DS (1977a) On the regional variation of heat flow, geotherms and the thickness of the lithosphere. Tectonophysics 38:279–296Google Scholar
  406. Pollack HN, Chapman DS (1977b) Mantle heat flow. Earth Planet Sci Lett 2:174–184Google Scholar
  407. Pollack HN, Chapman DS, Cermak V (1979) Global heat flow with special reference to the region of Europe. In: Cermak V, Rybach L (eds) Terrestrial heat flow in Europe. Springer, Berlin, pp 41–48Google Scholar
  408. Pollack HN, Hurter SJ, Johnson JR (1993) Heat flow from the Earth’s interior: analysis of the global data set. Rev Geophys 31(3):267–280Google Scholar
  409. Polyak BG, Smirnov YA (1968) Relationship between terrestrial heat flow and the tectonics of continents. Geotectonics 4:205–213Google Scholar
  410. Popov YA, Pimenov VP, Pevzner LA, Romushkevich RA, Popov EY (1998) Geothermal characteristics of the Vorotilovo deep borehole drilled into the Puchezh-Katunk impact structure. Tectonophysics 291:205–223Google Scholar
  411. Popov YA, Pevzner SL, Pimenov VP, Romushkevich RA (1999) New geothermal data from the Kola superdeep well SG-3. Tectonophysics 306(3–4):345–366Google Scholar
  412. Powell WG, Chapman DS, Balling N, Beck AE (1988) Continental heat-flow density. In: Hänel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat-flow density determination. Kluwer Academic Publishers, Dordrecht, pp 167–222Google Scholar
  413. Prestwich J (1884) On underground temperatures, with observations on the conductivity of rocks, on the thermal effects of saturation and imbibition, and on a special source of heat in mountain ranges. Proc R Soc Lond 38:161–168Google Scholar
  414. Prestwich J (1886) On underground temperatures, with observations on certain causes which influence the conductivity of rocks, on the thermal effects of saturation and imbibition, and on a source of heat in mountain ranges. Proc R Soc Lond 41(246):1–116Google Scholar
  415. Quetelet A (1837) Sur les variations des températures de la terre (1er mémoire). Mémoires de l’Académie impériale et royale de Bruxelles X:88Google Scholar
  416. Quetelet A (1839) Résumé des observations météorologicues el des observations sur les températures de la Terre laites en 1838 à l’Observatoire royal de Bruxelles. Mémoires de l’Académie impériale et royale de Bruxelles XII:1–12Google Scholar
  417. Quetelet A (1840) Sur les variations annuelles de la température de la Terre à différentes profondeurs (2e mémoire). Mémoires de l’Académie impériale et royale de Bruxelles XIII:1–52Google Scholar
  418. Quetelet E (1875–1876) Sur la température de l’air à Bruxelles, 1833–1872 (supplément). Mémoires de l’Académie impériale et royale de Bruxelles XLI(Part II):1–52Google Scholar
  419. Radau R (1880) The interior of the earth. Popular Sci Mon (July):289–303Google Scholar
  420. Ramanathan V, Barkstrom BR, Harrison EF (1989) Climate and the earth’s radiation budget. Phys Today 42(5):22–32Google Scholar
  421. Rao RUM, Rao GV, Reddy GK (1982) Age dependence of continental heat flow—Fantasy and facts. Earth Planet Sci Lett 59:288–302Google Scholar
  422. Ray L, Senthil KP, Reddy GK, Roy S, Rao GV, Srinrvasan R, Rao RUM (2003) High mantle heat flow in a Precambrian granulite province: evidence from southern India. J Geophys Res 108:B2, ETG6.1–ETG6.13Google Scholar
  423. Ray L, Roy S, Srinivasan R (2008) High radiogenic heat production in the Kerala Khondalite Block, Southern Granulite Province, India. Int J Earth Sci 97(2):257–267Google Scholar
  424. Revelle RR, Maxwell AE (1952) Heat flow through the floor of the Eastern North Pacific Ocean. Nature 170:199–202Google Scholar
  425. Rezanov IA (2002) History of the cosmogonic hypothesis of O. Yu. Shmidt. Probl Hist Sci Tech (4) (in Russian)Google Scholar
  426. Richter FM (1985) Models for the Archean thermal regime. Earth Planet Sci Lett 73:350–360Google Scholar
  427. Richter FM (1986) Kelvin and the age of the Earth. J Geol 94:395–401Google Scholar
  428. Richter FM, Mendybaev RA, Davis AM (2006) Conditions in the protoplanetary disk as seen by the type B CAIs. Meteor Planet Sci 41(1):83–93Google Scholar
  429. Righter K, Drake MJ (1997a) A magma ocean on Vesta: core formation and petrogenesis of eucrites and diogenites. Meteorit Planet Sci 32:929–944Google Scholar
  430. Righter K, Drake MJ (1997b) Metal-silicate equilibrium in a homogeneously accreting earth: new results for Re. Earth Planet Sci Lett 146(3–4):541–553Google Scholar
  431. Righter K, Drake MJ, Scott E (2006) Compositional relationships between meteorites and terrestrial planets. In: Lauretta DS, McSween Jr HY (eds), Meteorites and the early Solar System II (Space Science). University of Arizona Press, TucsonGoogle Scholar
  432. Ringwood AE (1960) Some aspects of the thermal evolution of the Earth. Geochim Cosmochim Acta 20(3–4):241–259Google Scholar
  433. Robinson AH, Wallis HM (1967) Humboldt’s map of isothermal lines: a milestone in thematic cartography. Cartogr J 4(2):119–123Google Scholar
  434. Rolandone F, Jaupart C, Mareschal J-C, Gariépy C, Bienfait G, Carbonne C, Lapointe R (2002) Surface heat flow, crustal temperatures and mantle heat flow in the Proterozoic Trans-Hudson Orogen, Canadian Shield. J Geophys Res 107(2341):1–19Google Scholar
  435. Roy S, Rao RUM (2000) Heat flow in the Indian shield. J Geophys Res 105:25587–25604Google Scholar
  436. Roy RF, Blackwell DD, Birch F (1968) Heat generation of plutonic rocks and continental heat flow provinces. Earth Planet Sci Lett 5:1–12Google Scholar
  437. Roy S, Ray L, Bhattacharya A, Srinivasan R (2008) Heat flow and crustal thermal structure in the Late Archaean Closepet Granite batholith, south India. Int J Earth Sci 97(2):245–256Google Scholar
  438. Rubie DC, Gessmann CK, Frost DJ (2004) Partitioning of oxygen during core formation on the Earth and Mars. Nature 429:58–61Google Scholar
  439. Rubin AE, Mittlefehldt DW (1993) Evolutionary history of the mesosiderite asteroid: a chronologic and petrologic synthesis. Icarus 101(2):201–212Google Scholar
  440. Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33(3):267–309Google Scholar
  441. Rudnick RL, Nyblade AA (1999) The thickness and heat production of Archean lithosphere: constraints from xenolith thermobarometry and surface heat flow. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: field observations and high pressure xperimentation: a tribute to Francis R. (Joe) Boyd. The Geochemical Society, pp 3–12Google Scholar
  442. Russell JK, Kopylova MG (1999) A steady-state conductive geotherm for the north central Slave, Canada: inversion of petrological data from the Jericho Kimberlite pipe. J Geophys Res 104:7089–7101Google Scholar
  443. Rutherford E (1903) Radioactive change. Phil Mag 5:576–591Google Scholar
  444. Rybach L (1976) Radioactive heat production in rocks and its relation to other petrophysical parameters. Pure Appl Geophys 114(2):309–317Google Scholar
  445. Rybach L (1978) The relationship between seismic velocity and radioactive heat production in crustal rocks: An exponential law. Pure Appl Geophys 117(1–2):75–82Google Scholar
  446. Rybach L, Buntebarth G (1982) Relationships between the petrophysical properties density, seismic velocity, heat generation, and mineralogical consitution. Earth Planet Sci Lett 57:367–376Google Scholar
  447. Rybach L, Buntebarth G (1984) The variation of heat generation, density and seismic velocity with rock type in the continental lithosphere. Tectonophysics 103(1–4):335–344Google Scholar
  448. Rybach L, Cermák V (1987) The depth dependence of heat production in the continental lithosphere, derived from seismic velocities. Geophys Res Lett 14(3):311–313Google Scholar
  449. Safronov VS (1959) About initial temperature of Earth. Izv Acad Sci USSR Ser Geophys (1) (in Russian)Google Scholar
  450. Safronov VS (1969) Evolution of the protoplanetary cloud and formation of the earth and the planets. Nauka, Moscow, 206 p (in Russian)Google Scholar
  451. Safronov VS (1978) The heating of the Earth during its formation. Icarus 33(1):3–12Google Scholar
  452. Safronov VS, Kozlovskaya SV (1977) Heating of Earth by its bombardment by forming it bodies. Isv Acad Sci USSR Phys Earth 10:3–13 (in Russian)Google Scholar
  453. Sagan C, Chyba C (1997) The early faint Sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science 276(5316):1217–1221Google Scholar
  454. Sagan C, Mullen G (1972) Earth and Mars: evolution of atmospheres and surface temperatures. Science 177:52–56Google Scholar
  455. Saltzman B (1984). Advances in Geophysics, vol 26. Academic Press, London, 349 pGoogle Scholar
  456. Schmid R (2000) Geology of ultra-high-pressure rocks from the Dabie Shan, Eastern China. PhD Thesis, Institut für Geowissenschaften, University of PotsdamGoogle Scholar
  457. Schmidt OY (1949) Four lectures on the theory of the Earth’s origins. Academy of Science of USSR Publishers, MoscowGoogle Scholar
  458. Schmidt O (2001) A theory of earth’s origin: four lectures. University Press of the Pacific (originally published in Russian in 1949)Google Scholar
  459. Schott RC, Johnson CM (2001) Garnet-bearing trondhjemite and other conglomerate clasts from the Gualala basin, California: Sedimentary record of the missing western portion of the Salinian magmatic arc? Geol Soc Am Bull 113(7):870–880Google Scholar
  460. Schubert G, Cassen P, Young RE (1979) Core cooling by subsolidus mantle convection. Phys Earth Planet Int 20:194–208Google Scholar
  461. Schubert G, Stevenson D, Cassen P (1980) Whole Planet cooling and the radiogenic heat source contents of the Earth and Moon. J Geophys Res 85(B5):2531–2538Google Scholar
  462. Schubert G, Turcotte DL, Olson P (2001) Mantle convection in the Earth and Planets, 2 vols. Cambridge University Press, CambridgeGoogle Scholar
  463. Schulze DJ, Valley JW, Spicuzza KJ (2000) Coesite eclogites from the Roberts Victor kimberlite, South Africa. Lithos 54:23–32Google Scholar
  464. Sclater JG, Jaupart C, Galson D (1980) The heat flow through oceanic and continental crust and the heat loss of the Earth. Rev Geophys Space Phys 18:269–311Google Scholar
  465. Scott ERD, Krot AN (2005) Thermal processing of silicate dust in the solar nebula: clues from primitive chondrite matrices. Astrophys J 623:578Google Scholar
  466. Şerban DZ, Nielsen SB, Demetrescu C (2001) Transylvanian heat flow in the presence of topography, paleoclimate and groundwater flow. Tectonophysics 335(3–4):331–344Google Scholar
  467. Sertorio L, Tinetti G (2001) Available energy for life on a planet with or without stellar radiation. Nuovo Cimento 24 C(3):421–443Google Scholar
  468. Sharma KK, Bal KD, Parshad R, Lal N, Nagpaul KK (1980) Tectonophysics 70(1–2):135–158Google Scholar
  469. Shaviv NJ (2003) Toward a solution to the early faint Sun paradox: a lower cosmic ray flux from a stronger solar wind. J Geophys Res 108(A12):1437Google Scholar
  470. Shen JJ, Papanastassiou DA, Wasserburg GJ (1996) Precise Re-Os determinations and systematics of iron meteorites. Geochim Cosmochim Acta 60(15):2887–2900Google Scholar
  471. Shi X, Zhou D, Zhang Y (2000) Lithospheric thermal-rheological structures of the continental margin in the northern South China Sea. Chinese Sci Bull 45(22):2107–2112Google Scholar
  472. Shwartsman YG (2001) Heat condition of the lithosphere and latest changes of climat on European North. In: The lithosphere and hydrosphere of European North of Russia. Ural Branch of the Russian Academy of Science, pp 130–154 (in Russian)Google Scholar
  473. Simpson GG (1943) Mammals and the nature of continents. Am J Sci 241:1–31Google Scholar
  474. Slagstad T (2006) Did hot, high heat-producing granites determine the location of the Oslo Rift? Tectonophysics 412(1–2):105–119Google Scholar
  475. Slagstad T, Balling N, Elvebakk H, Midttømme K, Olesen O, Olsen L, Pascal Ch (2009) Heat-flow measurements in Late Palaeoproterozoic to Permian geological provinces in south and central Norway and a new heat-flow map of Fennoscandia and the Norwegian-Greenland Sea. Tectonophysics 473:341–361Google Scholar
  476. Sleep NH, Zahnle K, Neuhoff PS (2001) Initiation of clement surface conditions on the earliest Earth. Proc Natl Acad Sci USA 98(7):3666–3672Google Scholar
  477. Slichter LB (1941) Cooling of the Earth. Bull Geol Soc Am 52(4):561–600 Part 2Google Scholar
  478. Smith C, Wise MN (1989) Energy and empire: a biographical study of Lord Kelvin. Cambridge University Press, Cambridge, 898 pGoogle Scholar
  479. Smyslov AA (1974) Uranium and Thorium in the Earth’s crust. Nedra, Leningrad, 232 p (in Russian)Google Scholar
  480. Solomatov VS (2000) Fluid dynamics of a terrestrial magma ocean. In: Canup R, Righter K (eds) Origin of the Earth and Moon. University of Arizona Press, Tucson, Arizona, pp 323–338Google Scholar
  481. Song S, Yang J, Liou JG, Wu C, Shi R, Xu Z (2003) Petrology, geochemistry and isotopic ages of eclogites from the Dulan UHPM Terrane, the North Qaidam, NW China. Lithos 70:195–211Google Scholar
  482. Sorokhtin OG, Ushakov SA (2002) Evolution of the Earth: text book. Moscow State University, Moscow (in Russian)Google Scholar
  483. Speece MA, Bowen TD, Folcik JL, Pollack HN (1985) Analysis of temperatures in sedimentary basins: the Michigan Basin. Geophysics 50(8):1318–1334Google Scholar
  484. Spichak V, Zakharova O (2013) Electromagnetic Geothermometer. Scientific World, Moscow (in Russian)Google Scholar
  485. Spohn T, Schubert G (1991) Thermal equilibration of the Earth following a giant impact. Geophys J Int 107:163–170Google Scholar
  486. Springer M, Förster A (1998) Heat-flow density across the Central Andean subduction zone. Tectonophysics 291:123–139Google Scholar
  487. Stacey FD (1992) Physics of the Earth, 3rd edn. Brookfield Press, BrisbaneGoogle Scholar
  488. Stacey FD (2000) Kelvin’s age of the earth paradox revisited. J Geophys Res 105(13):13155–13158Google Scholar
  489. Stapff F (1883) On some results of the observations on underground temperature during the construction of the St. Gothard Tunnel. Trans North Engl Inst Min Mech Eng, XXXIII, pp 19–30Google Scholar
  490. Stein CA (1995) Heat flow of the Earth. Global Earth Physics. In: A handbook of physical constants. AGU Reference Shelf 1, pp 144–158Google Scholar
  491. Stevenson DJ (2008) A planetary perspective on the deep Earth. Nature 451:261–265Google Scholar
  492. Stewart JA (1990) Drifting continents and colliding paradigms: perspectives on the geoscience revolution. Indiana University Press, Bloomington, 304 pGoogle Scholar
  493. Stinner A (2002) Calculating the age of the Earth and the Sun. Phys Educ 37(4):296–305Google Scholar
  494. Storm LC, Spear FS (2005) Pressure, temperature and cooling rates of granulite facies migmatitic pelites from the southern Adirondack Highlands, New York. J Metamorph Geol 23(2):107–130Google Scholar
  495. Streepey MM, van der Pluijm BA, Essene EJ, Hall CM, Magloughlin JF (2000) Late Proterozoic (ca. 930 Ma) extension in eastern Laurentia. GSA Bull 112(10):1522–1530Google Scholar
  496. Strutt RJ (1906) On the distribution of radium in the Earth’s crust. Proc R Soc Lond Ser A (Containing papers of a mathematical and physical character) 78(522):150–153Google Scholar
  497. Strutt RJ (1910) On the radium content of basalt. Proc R Soc Lond A 84:377–379Google Scholar
  498. Sukumaran PV (2001) Early planetary environments and the origin of life. Resonance 6(10):16–28Google Scholar
  499. Suyetnov VV (1963) To the problem of search of structures using heat flow density. Transaction of the Institute of Geological of Dagestan Branch of the USSR Academy of Science, pp 73–76Google Scholar
  500. Suyetnov VV, Savin AV, Magomedov AG-G (1980) Some peculiarities of heat flow of left bank of the Astrakhan province. Abstracts of the Conference “Present conditions of methods and eqwipment for geothermal researches”. IVZ PGO “Uralgeologiya” Publishing, Swerdlovsk, pp 43–44Google Scholar
  501. Swedenborg E (1734) Opera Philosophica et Mineralia, Principia, vol 1, LeipzigGoogle Scholar
  502. Takahashi E (1990) Speculations on the Archean mantle: missing link between komatiite and depleted garnet peridotite. J Geophys Res 95(B10):15941–15954Google Scholar
  503. Thakur M, Blackwell DD (2008) Systematics of crustal radioactivity distribution and implication for mantle thermal evolution through time. AAPG search and discover Article No 90087 2008 AAPG/SEG Student Expo, Houston, TexasGoogle Scholar
  504. Thomson W (1860) On the reduction of observations of underground temperature. Trans R Soc Edinb 22:409Google Scholar
  505. Thomson W (1862) On the age of the Sun’s heat. Macmillan’s Mag 5:388–393Google Scholar
  506. Thomson W (1878) Problems relating to underground temperature. A fragment. Phil Mag 5(32):370–374Google Scholar
  507. Thomson W (Lord Kelvin) (1890) On the secular cooling of the Earth. In: Mathematical and physical papers, vol III, elasticity, heat, electro-magnetism. C.J. Clay and Sons, London, pp 295–311Google Scholar
  508. Tikhonov AN (1937) On influence of radioactive decay on the earth crust temperature. Izv Acad Sci USSR Ser Geogr Geophys (3):431–458Google Scholar
  509. Tilton GR, Reed GW (1963) Radioactive heat production in eclogite and some ultramafic rocks. In: Gneiss J, Goldberg ED (eds) Earth science and meteoritics. North-Holland, Amsterdam, pp 31–43Google Scholar
  510. Tobiska WK, Nusinov AA (2000) Status of ISO draft International Standard for determining solar irradiances (DIS 21348). Phys Chem Earth Part C Solar Terr Planet Sci 25(5–6):387–388Google Scholar
  511. Tonks WB, Melosh HJ (1993) Magma ocean formation due to giant impacts. J Geophys Res 98:5319–5333Google Scholar
  512. Tozer DC (1959) The electrical properties of the Earth interiors. Phys Chem Earth 3:414–436Google Scholar
  513. Tozer DC (1965) Thermal history of the Earth. Geophys J Int 3(2–3):95–112Google Scholar
  514. Tozer DC (1967) Towards a theory of thermal convection in the mantle. In: Gaskell TF (ed) The Earth’s mantle. Academic Press, New York, pp 325–353Google Scholar
  515. Tozer DC (1972) The present thermal state of the terrestrial planet. Phys Earth Planet Int 6:182–197Google Scholar
  516. Turcotte DL (1980) On the thermal evolution of the Earth. Earth Planet Sci Lett 48(1):53–58Google Scholar
  517. Turcotte DL, Oxburgh ER (1967) Convection in a mantle with variable physical properties. J Geophys Res 74:1458Google Scholar
  518. Turcotte DL, Schubert G (1982) Geodynamics: applications of continuum physics to geological problems. Wiley, New YorkGoogle Scholar
  519. Turcotte DL, Torrance KE, Hsui AT (1973) Convection in the earth’s mantle. Methods Comput Phys 13:431–454Google Scholar
  520. Turcotte DL, Paul D, White WM (2001) Thorium-uranium systematics require layered mantle convection. J Geophys Res 106(B3):4265–4276Google Scholar
  521. Urey HC (1952) The planets. Their origin and development. Yel University Press, New HavenGoogle Scholar
  522. Urey HC (1955) The cosmic abundances of potassium, uranium, and thorium and the heat balances of the Earth, the Moon, and Mars. Proc Nat Acad Sci USA 41:127–144Google Scholar
  523. Urey HC (1956) The cosmic abundances of potassium, uranium, and thorium and the heat balances of the Earth, the Moon, and Mars. Proc Natl Acad Sci USA 42:889–891Google Scholar
  524. Uyeda S (1988) Geodynamics. In: Hänel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat-flow density determination. Kluwer Academic Publishers, Dordrecht, pp 317–351Google Scholar
  525. Vacquier V (1998) A theory of the origin of the Earth’s internal heat. Tectonophysics 291(1–4):1–7Google Scholar
  526. Valley JW (2006) Early Earth. Elements 2:201–204Google Scholar
  527. Valley JW, Peck WH, King EM, Wilde SA (2002) A cool early Earth. Geology 30(4):351–354Google Scholar
  528. Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK, Wei CS (2005) 4.4 billion years of crustal maturation: oxygen isotopes in magmatic zircon. Contrib Mineral Petrol 1–20. doi: 10.1007/s00410-005-0025-8
  529. Valley JW, Cavosie AJ, Fu B, Peck WH, Wilde SA (2006) Comment on “Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga”. Science 312(5777):1139Google Scholar
  530. van den Berg AP, Yuen DA (2002) Delayed cooling of the Earth’s mantle due to variable thermal conductivity and the formation of a low conductivity zone. Earth Planet Sci Lett 199(3–4):403–413Google Scholar
  531. van Thienen P, Vlaar NJ, van den Berg AP (2005) Assessment of the cooling capacity of plate tectonics and flood volcanism in the evolution of Earth, Mars and Venus. Phys Earth Planet Int 150:287–315Google Scholar
  532. van Waterschoot WAJM, der Gracht V, Willis B, Chamberlin RT, Joly J, Molengraaff GAF, Gregory JW, Wegener A, Schuchert C, Longwell CR, Taylor FB, Bowie W, White D, Singewald Jr JT, Berry EW (1928). Theory of continental drift: a symposium on the origin and movement of land masses both inter-continental and intra-continental, as proposed by Alfred Wegener. American Association of Petroleum Geologists, Tulsa, Oklahoma, USAGoogle Scholar
  533. Vigneresse JL (1988) Heat flow, heat production and crustal structure in peri-Atlantic regions. Earth Planet Sci Lett 87(3):303–312Google Scholar
  534. Vinogradov AP (1962) Average content of chemical elements in main kinds of igneous rocks of Earth crust. Geochemistry (Geokhimiya) 7:555–571 (in Russian)Google Scholar
  535. Vitorello I, Pollack HN (1980) On the variation of continental heat flow with age and the thermal evolution of continents. J Geophys Res 85(B2):983–995Google Scholar
  536. Vitorello I, Hamza VM, Pollack HN (1980) Terrestrial heat flow in the Brazilian highlands. J Geophys Res 85:3778–3788Google Scholar
  537. Vityazev AV, and Pechernikova GV (1996) Early differentiation of the earth and problems of composition of Moon. Izv Russ Acad Sci, Phys Solid Earth 31(6):3–16Google Scholar
  538. von Buch L (1802) Lettre de. Mr. De Buch à M. A., Pictet, Sur la temperature de quelques sources des environs de Neuchatel. Bibliothèque Britannique. Sci Arts 9(3):261–269Google Scholar
  539. von Buch L (1806) Ueber die Temperatur von Rom. Gilbert Ann XXIV:236–241Google Scholar
  540. von Helmholtz H (1856) Lecture “On the interaction of natural forces”, Königsberg, 7 Feb 1854. Phil Mag 11(Series 4):489–518Google Scholar
  541. von Humboldt A (1817) Des lignes isothermes et de la distribution de la chaleur sur le globe. Mémoires de Physique et de Chimie de la Société d’Arcueil 3:462–602Google Scholar
  542. von Humboldt A (1820) On the temperature of the different mines in America. Printed for A. Constable (Edinburgh)Google Scholar
  543. von Humboldt A (1868) Cosmos: a sketch of a physical description of the universe, vol V. Henry G Bohn, London (translated from German)Google Scholar
  544. Vosteen H-D, Rath V, Clauser Ch, Lammerer B (2003) The thermal regime of the Eastern Alps from inversion analyses along the TRANSALP profile. Phys Chem Earth Parts A/B/C 28(9–11):393–405Google Scholar
  545. Voytov GI (2002) To the problem of hydrogen breathing of Earth. In: Degasing of Earth: geodynamics, geofluids, oil and gas. Nedra, Moscow (in Russian)Google Scholar
  546. Walferdin M (1837) Observation de la température du puits foré de Grenelle. Comptes rendus de l’Académie des Sciences 4Google Scholar
  547. Walker JCG (1985) Carbon dioxide on the early earth. Orig Life Evol Biosph 16(2):117–127Google Scholar
  548. Walter MJ, Trønnes RG (2004) Early Earth differentiation. Earth Planet Sci Lett 225(3–4):253–269Google Scholar
  549. Warren PH (1990) Lunar anorthosites and the magma-ocean plagioclase-flotation hypothesis: importance of FeO enrichment in the parent magma. Am Mineral 75:46–58Google Scholar
  550. Wasserburg GJ, MacDonald GJF, Hoyle F, Fowler WA (1964) Relative contributions of Uranium, Thorium, and Potassium to heat production in the Earth. Science 143(3605):465–467Google Scholar
  551. Waterston JJ (1853) On dynamical sequences in Kosmos. Athenaeum, pp 1099–1100Google Scholar
  552. Watson JV (1978) Precambrian thermal regimes. Philos Trans R Soc Lond A 288:431–440Google Scholar
  553. Weber R (1895) On the temperature variation of the thermal conductivity of rocks. Nature 52:458–459Google Scholar
  554. Wegener A (1912) Die Entstehung der Kontinente. Dr. A. Petermanns Mitteilungen aus Justus Perthes’ Geographischer Anstalt 63:185–195, 253–256, 305–309Google Scholar
  555. Wen L, Anderson DL (1997) Layered mantle convection: a model for geoid and topography. Earth Planet Sci Lett 146(3–4):367–377Google Scholar
  556. Whipple FL (2007) Earth moon and planets. Whipple PressGoogle Scholar
  557. White S (1996) Composition and zoning of garnet and plagioclase in Haast Schist, Northwest Otago, New Zealand: implications for progressive regional metamorphism. NZ J Geol Geophys 39:515–531Google Scholar
  558. Willacy K, Klahr HH, Millar TJ, Henning Th (1998) Gas and grain chemistry in a protoplanetary disk. Astron Astrophys 338:995–1005Google Scholar
  559. Williams HS (1897) The century’s progress in physics. Harper’s Mon Mag 95(566):258–259Google Scholar
  560. Williams Q, Hemley RJ (2001) Hydrogen in the deep Earth. Ann Rev Earth Planet Sci 29:365–418Google Scholar
  561. Williams DL, von Herzen RP (1974) Heat loss from the Earth: new estimate. Geology 2:327–328Google Scholar
  562. Williams CF, Galanis SP, Grubb FV, Sass JH (2006) Heat flow and geothermal resources of the Alaskan interior. Geol Soc Am Abstr 38(5):14Google Scholar
  563. Willis B (1944) Continental Drift: Ein marchen. Am J Sci 242:509–513Google Scholar
  564. Wilson WE (1903) Radium and Solar Energy. Nature 68:222Google Scholar
  565. Wolf A, Dannemann F (1935) A history of science, technology, and philosophy in the 16th & 17th centuries. George Allen & Unwin, London, 692 pGoogle Scholar
  566. Wood RJ, Walter MJ, Wade J (2006) Accretion of the Earth and segregation of its core. Nature 441:825–833Google Scholar
  567. Woolfson MM (2000) The origin and evolution of the solar system. Taylor & Francis, LondonGoogle Scholar
  568. Woolfson MM (2008) The formation of the solar system: theories old and new. World Scientific Publishing, SingaporeGoogle Scholar
  569. Woolum DS, Cassen P (1999) Astronomical constraints on nebular temperatures: implications for planetesimal formation. Meteorit Planet Sci 34(6):897–907Google Scholar
  570. Yagi T, Hishinuma T (1995) Iron hydride formed by the reaction of iron, silicate, and water: implications for the light element of the Earth’s core. Geophys Res Lett 22(14):1933–1936Google Scholar
  571. Yang H, Kyser K, Ansdell K (1998) Metamorphism of the MacLean Lake and Central Metavolcanic belts, La Ronge domain, Trans-Hudson Orogen: pressure–temperature variations and tectonic implications. Can J Earth Sci 35:905–922Google Scholar
  572. Yukutake T (2000) The inner core and the surface heat flow as clues to estimating the initial temperature of the Earth’s core. Phys Earth Planet Int 121(1–2):103–137Google Scholar
  573. Zahnle KJ, Kasting JF, Pollack JB (1988) Evolution of a steam atmosphere during Earth’s accretion. Icarus 74:62–97Google Scholar
  574. Zaun PE, Wagner GA (1985) Fission-track stability in zircons under geological conditions. Nucl Tracks Radiat Meas 10(3):303–307Google Scholar
  575. Zeck HP (1996) Betic-Rif orogeny: subduction of Mesozoic Tethys lithosphere under eastward drifting Iberia, slab detachment shortly before 22 Ma, and subsequent uplift and extensional tectonics. Tectonophysics 254(1–2):1–16Google Scholar
  576. Zemtsov A (2005). Alexander von Humboldt’s ideas on volcanism and their influence on Russian scientists. Humboldt Net Int Rev Humboldtian Stud VI:11, 32–38Google Scholar
  577. Zhao Z-F, Zheng Y-F, Wei C-S, Gong B (2004) Temporal relationship between granite cooling and hydrothermal uranium mineralization at Dalongshan in China: a combined radiometric and oxygen isotopic study. Ore Geol Rev 25(3–4):221–236Google Scholar
  578. Zharkov VI (1958) On the electric conductivity and temperature of the Earth’s mantle. Izv Russ Acad Sci Phys Solid Earth 40:458–470Google Scholar
  579. Zharkov VI, Trubitsin VP, Samsonenko LV (1971) Physics of the Earth and Planets. Nauka, Moscow (in Russian)Google Scholar
  580. Zuy VI (2007) Structure of heat field of platform cover in Belorussia. D. Sci Thesis, MinskGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Geophysics, Atmospheric and Planetary SciencesTel Aviv UniversityTel AvivIsrael
  2. 2.BYG Consulting Co.BostonUSA
  3. 3.Universal Geoscience and Environment Consulting CompanyWillowdaleCanada

Personalised recommendations