Skip to main content

The Thermal Field of the Earth

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Earth System Sciences ((LNESS))

Abstract

The Earth is about 4.6 billion years old. In terms of its thermal regime, the planet is in the process of cooling. However, to have reached its current state, the Earth and the other objects making up the Solar System went through a number of stages such as the accretion of the planet from dust of the solar nebula, the formation of the magma-ocean, stratification of matter by density, solidification of the magma-ocean, formation of the lithosphere which is taking place today, periods of increased volcanic and metamorphic activity, numerous tectonic processes with global and regional significance (obduction, subduction, orogeny, etc.), heat production by short-lived and long-lived radioisotopes, and numerous other features and processes related to thermodynamic and temperature conditions. In this Chapter are analyzed such fundamental phenomena as sources of the thermal energy in the Earth's interior, geothermal gradient, density of heat flow, heat flow and geological age, mantle heat flow, temperature distribution inside the Earth and other Earth-thermal interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abbady AGE, El-Arabi AM, Abbady A (2006) Heat production rate from radioactive elements in igneous and metamorphic rocks in Eastern Desert, Egypt. Appl Radiat Isot 64(1):131–137

    Google Scholar 

  • Abbott D, Burgess L, Longhi J (1994) An empirical thermal history of the Earth’s upper mantle. J Geophys Res 99:13835–13850

    Google Scholar 

  • Abe Y (1997) Thermal and chemical evolution of the terrestrial magma ocean. Phys Earth Planet Int 100(1–4):27–39

    Google Scholar 

  • Abe Y, Matsui T (1985) The formation of an impact-generated H2O atmosphere and its implications for the early thermal history of the earth. J Geophys Res 90:C545–C559

    Google Scholar 

  • Adams LX (1924) Temperatures at moderate depths within the earth. J Wash Acad Sci 459–472

    Google Scholar 

  • Adie R (1854) On the temperature of running streams during periods of frost. Edinb Phil J LVI:224–229

    Google Scholar 

  • Adie R (1863) On the mean annual temperature of Western Europe, compared with other climes. Brit Meteor Soc Proc I:303–306

    Google Scholar 

  • Adushkin VV, Vityazev AV (2007) Origin and evolution of Earth: present view. Vestnik Russ Acad Sci 77(5):396–402 (in Russian)

    Google Scholar 

  • Albarede F (1975) The heat flow/heat generation relationship: An interaction model of fluids with cooling intrusions. Earth Planet Sci Lett 27(1):73–78

    Google Scholar 

  • Aleinikov AL, Belikov VT, Eppelbaum LV (2001) Some Physical Foundations of Geodynamics. Kedem Printing-House, Tel Aviv, Israel (in Russian, contents and summary in English)

    Google Scholar 

  • Alexidze MA, Gugunava GG, Kiria DK, Chelidze TL (1993) A three-dimensional stationary model of the thermal and thermoelastic fields of the Caucasus. Tectonophysics 227(1–4):191–203

    Google Scholar 

  • Amirkhanov KhI, Rovnin LI, Suyetnov VC, Gaurbekov KhA, Baykov AM (1975) Experience of oil and gas thermal research. Makhachkala, Russia (in Russian)

    Google Scholar 

  • Anderson EM (1934) Earth contraction and mountain building. Gerlands Beiträge zur Geophisik 42:133–159, 43:1–18

    Google Scholar 

  • Anderson DL (1967) A seismic equation of state. Geophys J Roy Astron Soc 13:9–30

    Google Scholar 

  • Anderson DL (1989) Theory of the Earth. Blackwell Science, Oxford

    Google Scholar 

  • Anderson DL (2002a) The case for irreversible chemical stratification of the mantle. Int Geol Rev 44(2):97–116

    Google Scholar 

  • Anderson DL (2002b) The inner inner core of Earth. Proc Natl Acad Sci USA 99(22):13966–13968

    Google Scholar 

  • Anderson DL (2006) Speculations on the nature and cause of mantle heterogeneity. Tectonophysics 416(1–4):7–22

    Google Scholar 

  • Anderson DL (2007) New theory of the earth. Cambridge University Press, Cambridge

    Google Scholar 

  • Antonov VE, Baier M, Dorner B, Fedotov VK, Grosse G, Kolesnikov AI, Ponyatovsky EG, Schneider G, Wagner FE (2002) High-pressure hydrides of iron and its alloys. J Phys Condens Matter 14:6427–6445

    Google Scholar 

  • Arago DFJ (1820) Sur la temperature de l’interieur du globe. Ann Chim, XIII, pp 183–211

    Google Scholar 

  • Arago F (1857) Sur l’état thermométrique du globe terrestre. In: Notices Scientifiques, Oeuvres Complètes, 2ème éd. tome cinquième, Paris, Legrand, Pomey et Crouzet, pp 148–646

    Google Scholar 

  • Arevalo R Jr, McDonough WF, Luong M (2009) The K/U ratio of the silicate Earth: insights into mantle composition, structure and thermal evolution. Earth Planet Sci Lett 278:361–369

    Google Scholar 

  • Arshavskaya NI (1979) On the linear relationship between heat ffow and heat generation in the shields. In: Experimental and theoretical studies of heat flow. Nauka, Moscow, pp 177–194 (in Russian)

    Google Scholar 

  • Ashwal LD, Morgan P, Kelley SA, Percival J (1987) Heat production in an Archean crustal profile and implications for heat flow and mobilization of heat producing elements. Earth Planet Sci Lett 85:439–450

    Google Scholar 

  • Attoh K (2000) Contrasting metamorphic record of heat production anomalies in the Penokean Orogen of Northern Michigan. J Geol 108:353–361

    Google Scholar 

  • Bagin VI, Brodskaya SY, Petrova GN, Pechersky DM (1969) Study on the ferromagnetic fractions in basalts. Izv Acad Nauk USSR Ser Phys Earth (11):66–76 (in Russian)

    Google Scholar 

  • Bakewell R (1838) An introduction to geology: intended to convey a practical knowledge of the science, and comprising the most important recent discoveries; with explanations of the facts and phenomena which serve to confirm or invalidate various geological theories. Longman, Orme, Brown, Green, and Longmans, London

    Google Scholar 

  • Baldwin JA, Bowring SA, Williams ML, Williams IS (2004) Eclogites of the Snowbird tectonic zone: petrological and U-Pb geochronological evidence for Paleoproterozoic high-pressure metamorphism in the western Canadian Shield. Contrib Mineral Petrol 147(5):528–548

    Google Scholar 

  • Balling NP (1976) Geothermal models of the crust and uppermost mantle of the Fennoscandian shield in south Norway and the Danisch Embayment. J Geophys 42:237–256

    Google Scholar 

  • Balobaev VT, Kutasov IM, Eppelbaum LV (2009) The maximum effect of deep lakes on temperature profiles – determination of the geothermal gradient. Earth Sci Res J 13(1):54–63

    Google Scholar 

  • Barkstrom BR, Smith GL (1986) The Earth radiation budget experiment: science and implementation. Rev Geophys 24:379–390

    Google Scholar 

  • Basu AR, Ongley JS, Macgregor ID (1986) Eclogites, pyroxene geotherm, and layered mantle convection. Science 233(4770):1303–1305

    Google Scholar 

  • Beckwith SVW, Sargent AI, Chini RS, Guesten R (1990) A survey for circumstellar disks around young stellar objects. Astron J 99:924–945

    Google Scholar 

  • Becquerel H (1896) Sur les radiations émises par phosphorescence. Comptes rendus de l’Académie des Sciences, Paris 122:420–421 (in French)

    Google Scholar 

  • Becquerel H (1901) Sur la radioactivitie de l’uranium. Comptes Rendus de Seances de l’academie de Sciences 83:977–978 (in French)

    Google Scholar 

  • Bedini R-M, Blichert-Toft J, Boyet M, Albarède F (2004) Isotopic constraints on the cooling of the continental lithosphere. Earth Planet Sci Lett 223(1–2):99–111

    Google Scholar 

  • Benenson W, Harris JW, Stocker H, Lutz H (eds) (2002) Handbook of physics, 4th edn. Springer, New York

    Google Scholar 

  • Benfield AE (1939) Terrestrial heat flow in Great Britian. Proc R Soc Lond A 173:428–450

    Google Scholar 

  • Bennett J, Donahue M, Schneider N, Voit M (2004) The cosmic perspective, 3rd edn. San Francisco Pearson Education Inc. publ. as Addison Wesley, 844 p

    Google Scholar 

  • Birch F (1960) The velocity of compressional waves in rocks to 10 kilobars. Part I. J Geophys Res 65:1083–1102

    Google Scholar 

  • Birch F (1961) The velocity of compressional waves in rocks to 10 kilobars. Part 2. J Geophys Res 66:2199–2224

    Google Scholar 

  • Birch F (1965) Energetics of core formation. J Geophys Res 24(70):6217–6221

    Google Scholar 

  • Birch F, Roy RF, Decker ER (1968) Heat flow and thermal history in New York and New England. In: Zen E, White WS, Hadley JB, Thompson Jr JB (eds) Studies of appalachian geology: Northern and maritime. Interscience, New York, pp 437–451

    Google Scholar 

  • Bischof G (1836) On, the cause of the temperature of hot and thermal springs; and on the bearings of this subject, as connected with the general question regarding the internal temperature of the Earth. Edinb Phil J XX(XL):329–375

    Google Scholar 

  • Bjørnerud MG, Austrheim H (2004) Inhibited eclogite formation: the key to the rapid growth of strong and buoyant Archean continental crust. Geology 32(9):765–768

    Google Scholar 

  • Blackwell DD (1971) The thermal structure of the continental crust. In: Heacock JD (ed) The structure and physical properties of the Earth’s crust. Geophys Monogr Ser 14:169–184. AGU, Washington, DC

    Google Scholar 

  • Blackwell DD (1983) Heat flow in the Northern Basin and Range Province. In: Geothermal Resources Council (ed) The role of heat in the development of energy and mineral resources in the Northern Basin and Range Province, Special Report 13, pp 81–93

    Google Scholar 

  • Blackwell DD, Thakur M (2007) Birch’s crustal heat production-heat flow law: key to quantifying mantle heat flow as a function of time. In: Preoceedings of the American Geophysical Union Fall Meeting 2007, Abstract T22B-07

    Google Scholar 

  • Blackwell DD, Steele JL, Brott CA (1980) The terrain effect on terrestrial heat flow. J Geophys Res 85(B9):4757–4772

    Google Scholar 

  • Blackwell DD, Steele JL, Carter LC (1991) Heat flow patterns of the North American continent: a discussion of the Dnag geothermal map of North America. In: Slemmons DB, Engdahl ER, Zoback MD, Blackwell DD (eds) Neotectonics of North America, Boulder, Colorado, Geological Society of America, Decade Map volume 1

    Google Scholar 

  • Bodell JM, Chapman DS (1982) Heat flow in the North-Central Colorado Plateu. J Geophys Res 87:2869–2884

    Google Scholar 

  • Bodorkos S, Reddy SM (2004) Proterozoic cooling and exhumation of the northern central Halls Creek Orogen, Western Australia: constraints from a reconnaissance 40Ar/39Ar study. Aust J Earth Sci 51(4):591–609

    Google Scholar 

  • Boss AP (1998) Temperatures in protoplanetary disks. Ann Rev Earth Plan Sci 26:53–80

    Google Scholar 

  • Bott MHP (1982) The interior of the Earth: its structure, constitution, and evolution, 2nd edn. Elsevier, New York, 403 p

    Google Scholar 

  • Boyet M, Carlson RW (2007) A highly depleted moon or a non-magma ocean origin for the lunar crust? Earth Planet Sci Lett 262(3–4):505–516

    Google Scholar 

  • Brady RJ, Ducea MN, Kidder SB, Saleeby JB (2006) The distribution of radiogenic heat production as a function of depth in the Sierra Nevada batholith, California. Lithos 86:229–244

    Google Scholar 

  • Brandner W (2006) Planet formation: theory, observations and experiments. Cambridge University Press, Cambridge

    Google Scholar 

  • Brown GC, Mussett AE (1993) The inaccessible Earth. Chapman & Hall, London

    Google Scholar 

  • Brush SG (1977) The origin of the planetesimal theory. Orig Life Evol Biosph 8(1):3–6

    Google Scholar 

  • Bucher WH (1933) The deformation of the Earth’s Crust. Princeton University Press, Princeton

    Google Scholar 

  • Bullard EC (1939) Heat flow in South Africa. Proc R Soc Lond A 173:474–502

    Google Scholar 

  • Bullard EC (1954) The flow of heat through the floor of the Atlantic Ocean. Proc R Soc Lond A 222:408–429

    Google Scholar 

  • Burke KC, Kidd WSF (1978) Were Archean continental geothermal gradients much steeper than those of today? Nature 272:240–241

    Google Scholar 

  • Cameron AGW (1973) Accumulation processes in the primitive solar nebula. Icarus 18(3):407–450

    Google Scholar 

  • Cameron AGW (1978) The primitive solar accretion disk and the formation of planets. In: Dermot SF (ed) The origin of the Solar System. Willey, New York, pp 49–74

    Google Scholar 

  • Cameron AGW (1995) The first ten million years in the solar nebula. Meteoritics 30:133–161

    Google Scholar 

  • Cameron AGW (1997) The Origin of the Moon and the Single Impact Hypothesis V. Icarus 126(1):126–137

    Google Scholar 

  • Cameron AGW, Pine MR (1973) Numerical models of the primitive solar nebula. Icarus 18:377–406

    Google Scholar 

  • Caro G, Bourdon B, Wood BJ, Corgne A (2005) Trace-element fractionation in Hadean mantle generated by melt segregation from a magma ocean. Nature 436:246–249

    Google Scholar 

  • Carpenter WM (1843) Some remarks on the methods in common use of obtaining the mean temperature of places, and on the supposed difference between temperature of the air and that of the Earth. Am J Sci Arts 44:50–54

    Google Scholar 

  • Carslaw HS (1906) Introduction to the mathematical theory of the conduction of heat in solids. Dover Publications, London

    Google Scholar 

  • Carslaw HS (1921) Introduction to the mathematical theory of the conduction of heat in solids, 2nd edn. Completely revised. Macmillan and Co., Ltd, London

    Google Scholar 

  • Carslaw HS, Jaeger JC (1946) Conduction of heat in solids. Oxford University Press, Oxford

    Google Scholar 

  • Carslow HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Čermák V (1982a) A geothermal model of the lithosphere and a map of the thickness of the lithosphere on the territory of the USSR. Izv Acad Sci USSR Phys Earth 18(1):18–27

    Google Scholar 

  • Čermák V (1982b) Crustai temperature and mantle heat flow in Europe. Tectonophysics 83:123–142

    Google Scholar 

  • Čermák V (1989) Crustal heat production and mantle heat flow in Central and Eastern Europe. Tectonophysics 159(3–4):195–215

    Google Scholar 

  • Čermák V (1993) Lithospheric thermal regimes in Europe. Phys Earth Planet Int 79:179–193

    Google Scholar 

  • Čermák V, Bodri L (1995) Three-dimensional deep temperature modelling along the European geotraverse. Tectonophysics 244(1–3):1–11

    Google Scholar 

  • Čermak V, Hänel R (1988) Geothermal maps. In: Hänel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat flow density determination. Kluwer Academic Publishers, Dordrecht, pp 261–300

    Google Scholar 

  • Čermák V, Hurting E (1979) Heat flow map of Europe, 1:5,000,000. In: Čermák V, Rybach L (eds) Terrestrial heat flow in Europe. Springer, Berlin

    Google Scholar 

  • Čermák V, Rybach L (eds) (1979) Terrestrial heat flow in Europe. Springer, Berlin

    Google Scholar 

  • Čermák V, Rybach L (eds) (1991) Terrestrial heat flow and the lithosphere structure. Springer, Berlin

    Google Scholar 

  • Čermák V, Bodri L, Rybach L, Buntebarth G (1990) Relationship between seismic velocity and heat production: comparison between two sets of data and test of validity. Earth Planet Sci Lett 99(1–2):48–57

    Google Scholar 

  • Čermàk V, Balling N, Kukkonen IT, Zui VI (1993) Heat flow in the Baltic Shield—Results of the lithospheric geothermal modelling. Precambr Res 64:53–65

    Google Scholar 

  • Čermák V (1984) Heat flow and deep structure of Europe. In: Proceedings of 27th international geological congress, vol 8, Moscow, pp 94–110

    Google Scholar 

  • Čermák V, Bodri L (1998) Heat flow map of Europe revisited. In: Clauser C (ed) Mitteilungen DGG, Sonderband II/1998, pp 58–63

    Google Scholar 

  • Čermák V, Lubimova EA, Stegina L (1976) Geothermal mapping in Central and Eastern Europe. In: Development and use of geothermal resources, vol 1. Transactions of the 2nd UN symposium, San Francisco. US Government Printing Office, Washington, pp 47–57

    Google Scholar 

  • Chamberlin TC (1916) The origin of the earth. The University of Chicago Press, Chicago

    Google Scholar 

  • Chandrasekhar S (1935) The radiation equilibrium of the outer layer of a star with special reference to the blanquening effect of the reverse layer. Mon Not R Astron Soc 95:21

    Google Scholar 

  • Chapman DS, Furlong KP (1977) Continental heat flow-age relationships (abstract). EOS Trans 58:1240

    Google Scholar 

  • Chapman SS, Pollack HN (1975) Global heat flow: a new look. Earth Planet Sci Lett 28:23–32

    Google Scholar 

  • Cheremensky GA (1977) Applied Geothermics. Nedra, Leningrad (in Russian)

    Google Scholar 

  • Chevalier l’abbé (1782) Observations et remarques sur la température tic l’hiver de l’année 1782. Mémoires de l’Académie impériale et royale de Bruxelles IV:271–275

    Google Scholar 

  • Christensen UR (1985) Thermal evolution models for the Earth. J Geophys Res 90:2995–3007

    Google Scholar 

  • Christensen UR (1989) Models of mantle convection: one or several layers. Phil Trans R Soc Lond A 328:417–424

    Google Scholar 

  • Christoffel CA, Connelly JN, Åhäll K-I (1999) Timing and characterization of recurrent pre-Sveconorwegian metamorphism and deformation in the Varberg-Halmstad region of SW Sweden. Precambr Res 98(3–4):173–195

    Google Scholar 

  • Chyba ChF (1990) Impact delivery and erosion of planetary oceans in the early inner Solar System. Nature 343:129–133

    Google Scholar 

  • Clauser Ch (2009) Heat transport processes in the Earth’s crust. Surv Geophys 30:163–191

    Google Scholar 

  • Condie KC (1981) Archean greenstone belts. Elsevier, Amsterdam

    Google Scholar 

  • Condie KC (1989a) Origin of the Earth’s crust. Global Planet Change 1(1–2):57–81

    Google Scholar 

  • Condie KC (1989b) Plate tectonics and crustal evolution, 3rd edn. Pergamon Press, New York

    Google Scholar 

  • Cook FA, Turcotte DL (1981) Parameterized convection and the thermal evolution of the Earth. Tectonophysics 75(1–2):1–17

    Google Scholar 

  • Cordier PLA (1827) Essai sur la température de l’intérieur de la terre. In: Mémoires de l’Académie des Sciences, pp 473–556 (in French)

    Google Scholar 

  • Costain JK, Speer JA, Glover L III, Perry L, Dashevsky S, McKinney M (1986) Heat flow in the Piedmont and Atlantic Coastal Plain of the southeastern United States. J Geophys Res 91(B2):2123–2136

    Google Scholar 

  • Cox PA (1990) The elements: their origin, abundance, and distribution. Oxford University Press, New York

    Google Scholar 

  • Crookes W (1900) Radio-activity of uranium. Proc R Soc Lond 66:409–422

    Google Scholar 

  • Cull JP (1982) An appraisal of Australian heat flow data, BMR. J Aust Geol Geophys 7:11–21

    Google Scholar 

  • Cull JP (1991) Heat flow and regional geophysics in Australia. In: Cermak V, Rybach L (eds) Terrestrial heat flow and the lithosphere structure. Springer, New York, pp 486–500

    Google Scholar 

  • Curie M (1898) Rays emmitted by compounds of uranium and thorium. Comptes Rendus de Seances de l’academie de Sciences 126:1101–1103 (in French)

    Google Scholar 

  • Curie P, Curie M (1898) Sur une nouvelle substance radioactive, contenue dans la pechblende. Comptes Rendus de Seances de l’academie de Sciences 127:175–178 (in French)

    Google Scholar 

  • Curie P, Laborde A (1903) On the heat spontaneously released by the salts of radium. Comptes Rendus de Seances de l’academie de Sciences 86:673

    Google Scholar 

  • Curie P, Laborde A (1906) Sur la radioactivité des gaz qui proviennent de l’eau des sources thermales. Comptes Rendus de Seances de l’academie de Sciences 142:1462–1465

    Google Scholar 

  • Curie P, Curie M, Bemont G (1898) Sur une nouvelle substance fortement radioactive, contenue dans la pechblende. Comptes Rendus de Seances de l’academie de Sciences 127:1215–1217 (in French)

    Google Scholar 

  • d’Aubuisson de Voisins JF (1801) Extrait d’une lettre contenant quelques observations thermometriques faites a la mine de Beschert-Gliick. J Min XI:1801–1802, 517–520

    Google Scholar 

  • d’Aubuisson de Voisins JF (1802) Sur la temperature dans les mines de Freyberg. J Min, XIII, pp 113–122

    Google Scholar 

  • d’Aubuisson de Voisins JF (1806) Notices sur la Temperature de la terre. J Phys LXIL:443–461 (in French)

    Google Scholar 

  • d’Aubuisson de Voisins JF (1830) Mernoire sur la temperature de la terre. Mem Acad II:102–107 (Toulouse) (in French)

    Google Scholar 

  • da Silva Schmitt R, Trouw RAJ, Van Schmus WR, Pimentel MM (2004) Late amalgamation in the central part of West Gondwana: new geochronological data and the characterization of a Cambrian collisional orogeny in the Ribeira Belt (SE Brazil). Precambr Res 133(1–2):29–61

    Google Scholar 

  • Daillant OR, Bernollin A, Josset M, Fifield KL (2009) Potential of lichens for monitoring iodine-129 and chlorine-36. J Radioanal Nucl Chem 281(2):241–245

    Google Scholar 

  • Dalrymple GB (2004) Ancient earth, ancient skies: the age of the earth and its cosmic surroundings. Stanford University Press, Stanford, 247 p

    Google Scholar 

  • Daubeny C (1837) Report on the present state of our knowledge with respect to mineral and thermal waters. Report: 6th meeting of the British Association for the advancement of science, vol V. John Murray, London, pp 1–96

    Google Scholar 

  • Davies GF (1980) Thermal histories of convective Earth models and constraints on radiogenic heat production in the Earth. J Geophys Res 85:2517–2530

    Google Scholar 

  • Davies GE (1990) Heat and Mass transport in the early Earth. In: Jones JH, Newsom HE (eds) The origin of the Earth. Oxford University Press, Oxford, pp 151–174

    Google Scholar 

  • Davies JH, Davies DR (2010) Earth’s surface heat flux. Solid Earth 1:5–24

    Google Scholar 

  • Davis EE, Elderfield H (eds) (2005) Hydrogeology of the oceanic lithosphere. Cambridge University Press, Cambridge

    Google Scholar 

  • de Beaumont JBALLE (1830) Recherches sur quelques-unes des revolutions de la surface du globe. Crochard (in French)

    Google Scholar 

  • de Buffon G-L (1778) Les époques de la nature. In: Histoire naturelle, vol XII. De L’Imprimerie Royale, À Paris (in French)

    Google Scholar 

  • De La Beche HT (1853) The geological observer, 2nd edn. Longman, Brown, Green, and Longmans, London

    Google Scholar 

  • De Smet J, van den Berg NJ (2000) Early formation and long-term stability of continents resulting from decompression melting in a convecting mantle. Tectonophysics 322(1–2):19–33

    Google Scholar 

  • Decker ER, Baker KR, Bucher GJ, Heasler HP (1980) Preliminary heat flow and radioactivity studies in Wyoming. J Geophys Res 85:311–321

    Google Scholar 

  • Deming D (2002) Origin of the ocean and continents: a unified theory of the Earth. Int Geol Rev 44(2):137–152

    Google Scholar 

  • Derry LA, Jacobsen SB (1990) The chemical evolution of Precambrian seawater: evidence from REEs in banded iron formation. Geochim Cosmochim Acta 54:2965–2977

    Google Scholar 

  • Descartes R (1644). Principia Philosophiae, Amsterdam

    Google Scholar 

  • Détraz C (1999) The discovery of radioactivity: a one-hundred year heritage. Nucl Phys A 654(1–2):C12–C18

    Google Scholar 

  • Dickson MH, Fanelli M (2004) What is geothermal energy?. Istituto di Geoscienze e Georisorse, CNR, Pisa

    Google Scholar 

  • Dmitriev VI, Rotanova NM, Zakharova OK (1975) Construction of mathematical models of distribution of electric conductivity and temperature inside the Earth. In: Analysis of space-temporary structure of geomagnetic field. Nauka, Moscow, pp 111–129

    Google Scholar 

  • Dobrzhinetskaya LF, Eide EA, Larsen RB, Sturt BA, Trønnes RG, Smith DC, Taylor WR, Posukhova TV (1995) Microdiamonds in high-grade metamorphic rocks of the Western Gneiss region, Norway. Geology 23(7):597–600

    Google Scholar 

  • Dörr W, Belka Z, Marheine D, Schastok J, Valverde-Vaquero P, Wiszniewska J (2002) U-Pb and Ar–Ar geochronology of anorogenic granite magmatism of the Mazury complex, NE Poland. Precambr Res 119(1–4):101–120

    Google Scholar 

  • Duchkov AD (ed) (1985) Catalog of heat flow data from Siberia (1966–1984). Institute of Geology and Geophysics, Siberian Branch of the Academic Science of the USSR, Novosibirsk (in Russian)

    Google Scholar 

  • Duchkov AD (1991) Review of Siberian heat flow data. In: Cermak V, Rybach L (eds) Terrestrial heat flow and the lithosphere structure. Springer, New York, pp 426–443

    Google Scholar 

  • Dutrow BL, Foster CT Jr, Henry DJ (1999) Tourmaline-rich pseudomorphs in sillimanite zone metapelites: demarcation of an infiltration front. Am Mineral 84:794–805

    Google Scholar 

  • Elkins-Tanton LT, Parmentier EM (2004) Consequences of high crystallinity for the evolution of the lunar msgma ocean: trapped plagioclase. Lunar Planet Sci XXXV:1678

    Google Scholar 

  • Engik AK, Austrheim H, Andersen TB (2000) Structural, moneralogical and petrophysical effects on deep crustal rocks of fluid-limited polymetamorphism, Western Gneiss Region, Norway. J Geol Soc Lond 157:121–134

    Google Scholar 

  • England PC (1979) Continental geotherms during the Archaean. Nature 277:556–558. doi:10.1038/277556a0

    Google Scholar 

  • England P, Molnar P, Richter F (2007) John Perry’s neglected critique of Kelvin’s age for the Earth: a missed opportunity in geodynamics. GSA Today 17(1):4–9

    Google Scholar 

  • Everett JD (1875) Illustrations of the centimeter-gram-second (C.G.S.) system of units. Phys Soc Lond

    Google Scholar 

  • Everett JD (1883) Underground Temperature Committee, summary of results contained in the first fifteen reports of the, by Prof. Everett. Report of the 52 meeting of the British Association for the advancement of science, Held at Southampton. John Murray, London, pp 74–90

    Google Scholar 

  • Eyles N, Young GM (1994) Geodynamic controls on glaciation in Earth history. In: Deynoux M, Miller JMG, Domack EW, Eyles N, Fairchild IJ, Young GM (eds) International geological correlation program Project 260: Earth’s glacial record. Cambridge University Press, Cambridge, pp 1–28

    Google Scholar 

  • Fairbairn W (1861) On the temperature of earth’s crust, as exhibited by thermometrical observations obtained during the sinking of the Deep Mine in Dukinfield. Edinb Phil J XIV(New series):163–164

    Google Scholar 

  • Faryad SW (1999) Exhumation of the Meliata high-pressure rocks (Westerm Carpathians): petrological and structural records in blueschists. Acta Monstanistica Slovaca Ročnik 4(2):137–144

    Google Scholar 

  • Fegley B Jr (2000) Kinetics of gas-grain reactions in the solar nebula. Space Sci Rev 92:177–200

    Google Scholar 

  • Fernàmdez M, Marzám I, Correia A, Ramalho E (1998) Heat flow, heat production, and lithospheric thermal regime in the Iberian Peninsula. Tectonophysics 291:29–53

    Google Scholar 

  • Flasar FM, Birch F (1973) Energetics of core formation: a correction. J Geophys Res 78:6101–6103

    Google Scholar 

  • Forbes J (1822) On the temperature of mines. Trans R Geol Soc Cornwall 2:159–217

    Google Scholar 

  • Förster A, Förster H-J, Masarweh R, Masri A, Tarawneh K, DESERT Group (2007) The surface heat flow of the Arabian Shield in Jordan. J Asian Earth Sci 30(2):271–284

    Google Scholar 

  • Foulger GR, Jurdy DM (eds) (2007) Plates, plumes, and planetary processes. Geological Society of America, New York

    Google Scholar 

  • Fountain DM (1986) Is there a relationship between seismic velocity and heat production for crustal rocks? Earth Planet Sci Lett 79(1–2):145–150

    Google Scholar 

  • Fountain DM, Salisbury MH, Furlong KP (1987) Heat production and thermal conductivity of rocks from the Pikwitonei-Sachigo continental cross-section, central Manitoba: implications for the thermal structure of Archean crust. Can J Earth Sci 24:1583–1594

    Google Scholar 

  • Fourier J (1824) Remarques Générales Sur Les Températures Du Globe Terrestre Et Des Espaces Planétaires. Ann Chim Phys 27:136–167

    Google Scholar 

  • Fox RW (1822) On the temperature of mines. Trans R Geol Soc Cornwall 2:14–28

    Google Scholar 

  • Fox RW (1827) Some further observations on the temperature of mines. Trans R Geol Soc Cornwall 3:313–328

    Google Scholar 

  • Fox RW (1858) Report on the temperature of some deep mines in Cornwall. Report of the 27th meeting of the British Association for the advancement of science. John Murray, London, pp 11, 96–101

    Google Scholar 

  • Franck S (1992) Olivine flotation and crystallization of a global magma ocean. Phys Earth Planet Int 74(1–2):23–28

    Google Scholar 

  • Galer SJG, Mezger K (1998) Metamorphism, denudation and sea level in the Archean and cooling of the Earth. Precambr Res 92(4):389–412

    Google Scholar 

  • Galushkin YI, Kutas RI, Smirnov YB (1991) Heat flow and analysis of the thermal structure of the lithosphere in the European part of the USSR. In: Cermak V, Rybach L (eds) Terrestrial heat flow and the lithosphere structure. Springer, New York, pp 206–237

    Google Scholar 

  • Gerlich G, Tscheuschner RD (2009) Falsification of the atmospheric CO2 greenhouse effects within the frame of physics. Int J Mod Phys B 23(3):275–364

    Google Scholar 

  • Gilat A, Vol A (2005) Primordial hydrogen-helium degasing, an overlooked major energy source for internal processes. HAIT (Holon Academic Institute of Technology, Israel). B, 2. J Sci Eng 2(1–2):125–167

    Google Scholar 

  • Gillispie CC (2004) Science and polity in France: the end of the old regime. Princeton University Press, Princeton

    Google Scholar 

  • Girdler RW (1970) A review of Red Sea heat flow. Phil Trans R Soc Lond A 267:191–203

    Google Scholar 

  • Glebovitskiĭ VA (1997) The early precambrian of Russia. CRC Press

    Google Scholar 

  • Gornov PY, Goroshko MV, Malyshev YF, Podgornyi VY (2009) Thermal structure of lithosphere in Central Asian and Pacific belts and their adjacent cratons, from data of geoscience transects. Russ Geol Geophys 50:485–499

    Google Scholar 

  • Gough DO (1981) Solar interior structure and luminosity variations. Sol Phys 74:21–34

    Google Scholar 

  • Graf JL Jr (1978) Rare earth elements, iron formations and seawater. Geochim Cosmochim Acta 42:1845–1863

    Google Scholar 

  • Gretener PE (1981) Geothermics: using temperature in hydrocarbon exploration. Short course notes, No 17. AAPG, 156 p

    Google Scholar 

  • Griggs DT (1939) A theory of mountain building. Am J Sci 237:611–650

    Google Scholar 

  • Grove TL, Parman SW (2004) Thermal evolution of the Earth as recorded by komatiites. Earth Planet Sci Lett 219:173–187

    Google Scholar 

  • Guyod H (1946) Temperature well logging. Oil Wkly 123(7):1–42

    Google Scholar 

  • Hales AL (1936) Convection currents in the Earth. Mon Not Roy Soc Geophys Suppl 3:372–379

    Google Scholar 

  • Hallam A (1989) Great geological controversies. Oxford University Press, New York

    Google Scholar 

  • Halliday AN (2000) Terrestrial accretion rates and the origin of the Moon. Earth Planet Sci Lett 176:17–30

    Google Scholar 

  • Hamilton WB (1998) Archean magmatism and deformation were not products of plate tectonics. Precambr Res 91(1–2):143–179

    Google Scholar 

  • Hamza VM, Muñoz M (1996) Heat flow map of South America. Geothermics 25(6):599–621

    Google Scholar 

  • Hamza VM, Verma RK (1969) The relationship of heat flow with the age of basement rocks. Bull Volcanol 33:123–152

    Google Scholar 

  • Hancock P, Skinner BJ (eds) (2000) The Oxford companion to the Earth. Oxford University Press, Oxford

    Google Scholar 

  • Hänel R, Grcnlie G, Heier KS (1979) Terrestrial heat flow determination in Norway and an attempted interpretation. In: Čermák V, Rybach L (eds) Terrestrial heat flow in Europe. Springer, Berlin, pp 232–240

    Google Scholar 

  • Hasterok D, Chapman DS (2007) A reference heat generation model for the continental lithosphere constrained by heat flow and elevation. AGU Transactions, Fall Meeting, Abstract #T22B-04

    Google Scholar 

  • Hays JF, Walker D (1975) Igneous lunar rocks and origin of Moon. In: Cosmochemistry of Moon and Planets, transaction of the Soviet-American conference on cosmochemistry of the Moon and Planets, 4–8 June 1974, Moscow. Nauka, Moscow (in Russian)

    Google Scholar 

  • Heier KS, Lambert IB (1978) A compilation of potassium, uranium and thorium abundances and heat production of Australian rocks. Technical report, Research School of Earth Science, Australian National University, Canberra

    Google Scholar 

  • Heizler MT, Ralser S, Karlstrom KE (1997) Late Proterozoic (Grenville?) deformation in central New Mexico determined from single-crystal muscovite 40Ar/39Ar age spectra. Precambr Res 84(1–2):1–15

    Google Scholar 

  • Hellman H (1998) Great feuds in science: ten of the liveliest disputes ever. Wiley, New York

    Google Scholar 

  • Hills JG (1973) On the process of accretion in the formation of the planets and comets. Icarus 18(3):505–522

    Google Scholar 

  • Höckenreiner M, Söllner F, Miller H (2003) Dating the TIPA shear zone: an early Devonian terrane boundary between the Famatinian and Pampean systems (NW Argentina). J South Am Earth Sci 16(1):45–66

    Google Scholar 

  • Hofmeister AM, Criss RE (2005) Earth’s heat flux revised and linked to chemistry. Tectonophysics 395:159–177

    Google Scholar 

  • Holland HD (1984) The chemical evolution of atmosphere and oceans. Princeton University Press, Princeton

    Google Scholar 

  • Holm NG, Hennet RJ-C (1992) Chapter 2 Hydrothermal systems: their varieties, dynamics, and suitability for prebiotic chemistry. Orig Life Evol Biosph 22(1–4):15–31

    Google Scholar 

  • Holmes A (1915) Radioactivity and the Earth’s thermal history. Part II. Radioactivity and the Earth as a cooling body. Geol Mag 6:102–112

    Google Scholar 

  • Holmes A (1916) Radioactivity and the Earth’s thermal history. Part III. Radioactivity and isostasy. Geol Mag 6:265–274

    Google Scholar 

  • Holmes A (1925) Radioactivity and the earth’s thermal history. Part. IV. A criticism of Parts I, II and III. Geol Mag 62:504–515

    Google Scholar 

  • Holmes A (1930) Radioactivity and geology. Trans Edinb Geol Soc 12:281–283

    Google Scholar 

  • Holmes A (1931) Radioactivity and earth movements. Nature 128:496

    Google Scholar 

  • Hu S, He L, Wang J (2000) Heat flow in the continental area of China: a new data set. Earth Planet Sci Lett 179:407–419

    Google Scholar 

  • Humayun M, Cassen P (2000) Processes determining the volatile abundances of the meteorites and terrestrial planets. In: Canup RM, Righter K et al (eds) Origin of the Earth and Moon. University of Arizona Press, Tucson, pp 3–23

    Google Scholar 

  • Hurtig E, Schrötter J, Grosswig S, Kühn K, Harjes B, Wieferig W (1992) Temperaturmessungen in Bohrlöchem mit Hilfe optischer Fasern. In: Forum für Zukunftsenergien e.V., Geothermische Vereinigung e.V., Geothermische Fachtagung 1992, Tagungsband, Bonn, pp 311–324

    Google Scholar 

  • Huston DL, Logan GA (2004) Barite, BIFs and bugs: evidence for the evolution of the Earth’s early hydrosphere. Earth Planet Sci Lett 220:41–55

    Google Scholar 

  • Jacobsen SB (2005) The Hf-W isotopic system and the origin of the Earth and Moon. Ann Rev Earth Planet Sci 33:531–570

    Google Scholar 

  • Jakosky BM (1999) Atmospheres of the terrestrial planets. In: Beatty JK, Petersen CC, Chaikin A (eds) The new Solar System, 4th edn. Cambridge University Press, Cambridge, pp 175–191

    Google Scholar 

  • James FAJL (1982) Thermodynamics and sources of solar heat, 1846–1862. Brit J Hist Sci 15:155–181

    Google Scholar 

  • Jarvis GT, Campbell IH (1983) Archean komatiites and geotherms—Solution to an apparent contradiction. Geophys Res Lett 10:1133–1136

    Google Scholar 

  • Jaupart C, Mareschal J-C (1999) The thermal structure of continental roots. Lithos 48:93–114

    Google Scholar 

  • Jaupart C, Mareschal J-C (2003) Constraints on crustal heat production from heat flow data. In: Rudnick R (ed) Treatise of geochemistry, vol 3, The Crust. Elsevier, New York, pp 65–84

    Google Scholar 

  • Jaupart C, Mareschal J-C (2007) Heat flow and thermal structure of the lithosphere. In: Schubert G (ed) Treatise of geophysics, vol 6. Elsevier, Oxford, pp 217–252

    Google Scholar 

  • Jaupart C, Labrosse S, Mareschal JC (2007) Temperatures, heat and energy in the mantle of the Earth. In: Bercovici D, Schubert G (eds) Treatise on geophysics, vol 7, Mantle dynamics, Chap 7.06. Elsevier, Amsterdam, pp 253–303

    Google Scholar 

  • Jeffreys H (1924) The Earth, its origin, history and physical constitution. Cambridge University Press, Cambridge

    Google Scholar 

  • Jeffreys H (1929) The early history of the Solar System on the collision theory. Mon Not R Astron Soc 89:731–739

    Google Scholar 

  • Jeffreys H (1930) The instability of a compressible fluid heated below. Proc Camb Philos Soc 26:170–172

    Google Scholar 

  • Jeffreys H (1952). The Earth: its origin, history and physical constitution, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Jeffreys H (1962) The Earth: its origin, history and physical constitution, 4th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Jeffreys H (1970) The Earth: its origin, history and physical constitution, 5th edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Jochum KP, Hofmann AW, Ito E, Seufert HM, White WM (1983) K, U and Th in mid-ocean ridge basalt glasses and heat production, K/U and K/Rb in the mantle. Nature 306:431–436

    Google Scholar 

  • Johnson EA, Rossman GR, Dyar MD, Valley JW (2002) Correlation between OH concentration and oxygen isotope diffusion rate in diopsides from the Adirondack Mountains, New York. Am Mineral 87:899–908

    Google Scholar 

  • Johnson SP, Cutten HNC, Muhongo S, De Waele B (2003) Neoarchaean magmatism and metamorphism of the western granulites in the central domain of the Mozambique belt, Tanzania: U-Pb shrimp geochronology and PT estimates. Tectonophysics 375:125–145

    Google Scholar 

  • Johnsson MJ (1985) Late paleozoic-middle Mesozoic uplift rate, cooling rate and geothermal gradient for south-central New York State. Nucl Tracks Radiat Meas 10(3):295–301

    Google Scholar 

  • Joly J (1909) Radioactivity and geology: an account of the influence of radioactive energy on terrestrial history. Archibald Constable & Co., Ltd, London

    Google Scholar 

  • Jones MQW (1987) Heat flow and heat production in the Namaqua mobile belt, South Africa. J Geophys Res 92:6273–6289

    Google Scholar 

  • Jones FW, Majorowicz JA, Dietrich J (1988) The geothermal regime of the northern Yukon and Mackenzie delta regions of northwest Canada—Studies of two regional profiles. Pure Appl Geophys 127(4):641–658

    Google Scholar 

  • Jorden JR, Campbell FL (1984) Well logging I—Rock properties, Borehole Environment, Mud and Temperature Logging. Monograph Ser 9. SPE of AIME, New York, Dallas

    Google Scholar 

  • Kaler JB (1994) Astronomy!. HarperCollins College Publications, New York

    Google Scholar 

  • Kant I (1755) Allgemeine Naturgeschichte und Theorie des Himmels. Johann Friederich Petersen, Königsberg und Leipzig

    Google Scholar 

  • Kappelmeyer O, Hänel R (1974) Geothermics with special reference to application. Gebruder Borntrargen, Berlin, Stutgart

    Google Scholar 

  • Karg H, Carter A, Brix MR, Littke R (2005) Late- and post-Variscan cooling and exhumation history of the northern Rhenish massif and the southern Ruhr Basin: New constraints from fission-track analysis. Int J Earth Sci 94(2):180–192

    Google Scholar 

  • Kasting JF, Donahue TM (1981) Evolution of oxygen and ozone in the Earth’s atmosphere. In: Billingham J (ed) Life in the universe. MIT Press, Cambridge, pp 149–162

    Google Scholar 

  • Kaufmann WJ III (1994) Universe, 4th edn. Freeman & Co., New York

    Google Scholar 

  • Kaufmann WJ III, Freedman RA (1999) Universe, 5th edn. Freeman & Co., New York

    Google Scholar 

  • Kaula WM (1979) Thermal evolution of the Earth and Moon growing by planetesimal impacts. J Geophys Res 84:999–1008

    Google Scholar 

  • Kelvin WT (1863). On the secular cooling of the Earth. Phil Mag 25(Series 4):1–14

    Google Scholar 

  • Kelvin WT (1864) On the secular cooling of the Earth. Excerpt. Trans R Soc Edinb, XXIII, pp 167–169

    Google Scholar 

  • Kelvin WT (1866) The “Doctrine of Uniformity” in geology briefly refuted. Proc R Soc Edinb 5:512–513

    Google Scholar 

  • Kelvin WT (1895) On the age of the earth. Nature 51:438–440

    Google Scholar 

  • Kelvin WT (1899) The age of the earth as an abode fitted for life. J Trans Victoria Inst 31:11–35

    Google Scholar 

  • Kelvin WT, Murray JR (1885a) On the temperature variation of the thermal conductivity of rocks. Science 2(31):129–130

    Google Scholar 

  • Kelvin WT, Murray JRE (1885) On the temperature variation of the thermal conductivity of rocks. Proc R Soc Lond 58:162–167

    Google Scholar 

  • Kerimov KM, Pilchin AN, Gadzhiev TG, Buachidze GY (1989) Geothermal map of the Caucasus, Scale 1:1,000,000. Baku, Cartographic Plant No. 11 (in Russian)

    Google Scholar 

  • Kern H, Siegesmund S (1989) A test of the relationship between seismic velocity and heat production for crustal rocks. Earth and Planet Sci Lett 92(1):89–94

    Google Scholar 

  • Kerridge JF (1977) Iron: whence it came, where it went. Space Sci Rev 20(1):3–68

    Google Scholar 

  • Ketcham RA (1996) Distribution of heat-producing elements in the upper and middle crust of southern and west central Arizona: evidence from the core complexes. J Geophys Res 101:13611–13632

    Google Scholar 

  • Kircher A (1665) Mundus Subterraneus in XII Libros Digestus. Joanne Jansson et Elize Weyerstraten, Amsterdam

    Google Scholar 

  • Klein C, Beukes NJ (1992) Time distribution, stratigraphy, sedimentologic setting, and geochemistry of Precambrian iron-formations. In: Schopf JW, Klein C (eds) The proterozoic biosphere. Cambridge University Press, Cambridge, pp 139–146

    Google Scholar 

  • Kleine T, Münker C, Mezger K, Palme H (2002) Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature 418(6901):952–955

    Google Scholar 

  • Knauth LP (2005) Temperature and salinity history of the Precambrian ocean: implications for the course of microbial evolution. Palaeogeogr Palaeoclimatol Palaeoecol 219(1–2):53–69

    Google Scholar 

  • Knauth LP, Lowe DR (2003) High Archean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. GSA Bull 115(5):566–580

    Google Scholar 

  • Knight C (ed) (1866) The English cyclopaedia, vol 1. Bradbury and Evans, London

    Google Scholar 

  • Koeberl Ch (2006) Impact processes on the early Earth. Elements 2(4):211–216

    Google Scholar 

  • Kohman TP (1997) Aluminum-26: a nuclide for all seasons. J Radioanal Nucl Chem 219(2):165–176

    Google Scholar 

  • Korenaga J (2006) Archean geodynamics and the thermal evolution of Earth. In: Benn K, Mareschal J-C, Condie KC (eds) Archean geodynamics and environments. Geophys Monogr Ser 164:7–32. AGU, Washington, DC

    Google Scholar 

  • Kremenentsky AA, Milanovsky SY, Ovchinnikov LN (1989) A heat generation model for the continental crust based on deep drilling in the Baltic Shield. Tectonophysics 159:231–246

    Google Scholar 

  • Kröner A (1982) Archaean to early Proterozoic tectonics and crustal evolution: a review. Rev Bras Geociências 12:15–31

    Google Scholar 

  • Kröner A, Collins AS, Hegner E, Muhongo S, Willner AP, Kehelpannala KVW (2001) Has the East African orogen played any role in the formation and breakup of the Supercontinent Rodinia and the amalgamation of Gondwana? New evidence from field relationship and isotopic data. Gondwana Res 4(4):669–671

    Google Scholar 

  • Kuhn WR, Walker JC, Marshall HG (1989) The effect on Earth’s surface temperature from variations in rotation rate, continent formation, solar luminosity, and carbon dioxide. J Geophys Res 94(D8):11129–11136

    Google Scholar 

  • Kukkonen IT, Jõeleht A (1996) Geothermal modelling of the lithosphere in the central Baltic Shield and its southern slope. Tectonophysics 255:25–45

    Google Scholar 

  • Kukkonen IT, Lahtinen R (2001) Variation of radiogenic heat production rate in 2.8–1.8 Ga old rocks in the central Fennoscandian Shield. Phys Earth Planet Int 126(3–4):279–294

    Google Scholar 

  • Kukkonen IT, Peltoniemi S (1998) Relationships between thermal and other petrophysical properties of rocks in Finland. Phys Chem Earth 23(3):341–349

    Google Scholar 

  • Kukkonen IT, Peltonen P (1999) Xenolith-controlled geotherm for the central Fennoscandian Shield: implications for lithosphere–asthenosphere relations. Tectonophysics 304:301–315

    Google Scholar 

  • Kukkonen IT, Golovanova YV, Druzhinin VS, Kosarev AM, Schapov VA (1997) Low geothermal heat flow of the Urals fold belt: Implication of low heat production, fluid circulation or paleoclimate. Tectonophysics 276:63–85

    Google Scholar 

  • Kukkonen IT, Gosnold WD, Safanda J (1998) Anomalously low heat flow density in eastern Karelia, Baltic Shield: a possible palaeoclimatic signature. Tectonophysics 291:235–249

    Google Scholar 

  • Kumar PS, Menon R, Reddy GK (2007a) Crustal geotherm in southern Deccan basalt province, India: The Moho is as cold as adjoining cratons. GSA Spec Papers 430:275–284

    Google Scholar 

  • Kumar PS, Menon R, Reddy GK (2007b) The role of radiogenic heat production in the thermal evolution of a Proterozoic granulite-facies orogenic belt: Eastern Ghats, Indian Shield. Earth Planet Sci Lett 254(1–2):39–54

    Google Scholar 

  • Kumar PS, Menon R, Reddy GK (2009) Heat production heterogeneity of the Indian crust beneath the Himalaya: insights from the northern Indian Shield. Earth Planet Sci Lett 283(1–4):190–196

    Google Scholar 

  • Kutas RI (1979) A geothermal model of the Earth’s crust on the territory of the Ukrainian Shield. In: Cermak V, Rybach L (eds) Terrestrial heat flow in Europe. Springer, Berlin, pp 309–315

    Google Scholar 

  • Kutas RI (1984) Heat flow, radiogenic heat production, and crustal thickness in southwest USSR. Tectonophysics 103:167–174

    Google Scholar 

  • Kutas RI, Gordienko VV (1971) Heat flow of the Ukraine. Naukova Dumka, Kiev (in Russian)

    Google Scholar 

  • Kutas RI, Bevzyuk MI, Vigovsky VF, Mikhaylyuk SF (1979) Investigation of geologic origin of heat field heterogeneities. Report on problem No 39-76-102/3. Institute of Geophysics, Ukrainian Academy of Science, Kiev (in Russian)

    Google Scholar 

  • Kutas RI, Kobolev VP, Tsvyashchenko VA (1998) Heat flow and geothermal model of the Black Sea depression. Tectonophysics 291:91–100

    Google Scholar 

  • Labrosse S, Jaupart C (2007) The thermal evolution of the Earth: Long term and uctuations. Earth Planet Sci Lett 260(3–4):465–481

    Google Scholar 

  • Labrosse S, Hernlund JW, Coltice N (2007) A crystallizing dense magma ocean at the base of the Earth’s mantle. Nature 450:866–869

    Google Scholar 

  • Lachenbruch AH (1968) Preliminary geothermal model for the Sierra Nevada. J Geophys Res 73:6977–6989

    Google Scholar 

  • Lachenbruch AH (1970) Crustal temperature and heat production: Implications of the linear beat-flow relation. J Geophys Res 75:3291–3300

    Google Scholar 

  • Lachenbruch AH (1971) Vertical gradients of heat production in the continental crust. Theoretical detectability from nearsurface measurements. J Geophys 17:3842–3851

    Google Scholar 

  • Lachenbruch AH, Sass JH, Galanis SP Jr (1985) Heat flow in Southernmost California and the origin of the salton trough. J Geophys Res 90:6709–6736

    Google Scholar 

  • Lake P (1922) Wegener’s displacement theory. Geol Mag 59(8):338–346

    Google Scholar 

  • Lambert RSJ (1976) Archean thermal regimes, crustal and upper mantle temperatures, and a progressive evolutionary model for the Earth. In: Windley BF (ed) The early history of the Earth. Wiley, London, pp 363–373

    Google Scholar 

  • Lambert IB (1982) Early geobiochemical evolution of the Earth. Rev Bras Geociências 12:32–38

    Google Scholar 

  • Landstrom O, Larson SA, Lind G, Malmqvist D (1980) Geothermal investigations in the Bohus granite area in southwestern Sweden. Tectonophysics 64:131–162

    Google Scholar 

  • Langseth MG, Anderson RN (1979) Correction. J Geophys Res 84:1139–1140

    Google Scholar 

  • Laplace PS (1799–1825) Traite de Mecanique Celeste. 5 volumes (vols I–II, 1799, vol III, 1802, vol IV, 1805, and vol V, 1825), Bachelier, Paris

    Google Scholar 

  • Lauretta DS, Nagahara H, Alexander CM O’D (2006) Petrology and origin of ferromagnesian silicate chondrules. In: Lauretta DS, McSween Jr HY (eds) Meteorites and the Early Solar System II. University of Arizona Press, Tucson, pp 431–459

    Google Scholar 

  • Lebour GA (1882) On the present state of our knowledge of underground temperature. Trans Engl Inst Min Mech Eng 31:59–71

    Google Scholar 

  • Lee WHK (1970) On the global variations of terrestrial heat-flow. Phys Earth Planet Int 2:332–341

    Google Scholar 

  • Lee WHK, Uyeda S (1965) Review of heat flow data. In: Lee WHK (ed) Terrestrial heat flow. Geophys Monogr 8:87–190. AGU, Washington, DC

    Google Scholar 

  • Lee MK, Brown GC, Webb PC, Wheildon J, Rollin KE (1987) Heat flow, heat production and thermotectonic setting in mainland UK. J Geol Soc Lond 144:35–42

    Google Scholar 

  • Lee C-TA, Lenardic A, Thiagarajan N, Agranier A, O’Neill CJ, Yin Q-Z (2006) Remnant iron oxide/sulfide mattes from a Hadean magma ocean at the core–mantle boundary: Insights from a small scale post-Archean analog. Geochim Cosmochim Acta 70(18, Suppl. 1):A347

    Google Scholar 

  • Leech ML, Ernst WG (2000) Petrotectonic evolution of the high- to ultrahigh-pressure Maksyutov Complex, Karayanova area, south Ural Mountains: structural and oxygen isotope constraints. Lithos 52:235–252

    Google Scholar 

  • Leibniz GW (1749) Protogaea. I.G. Schmidii. Goettingae, Sumptibus Ioh. Guil. Schmidii

    Google Scholar 

  • Lenardic A, Guillou-Frottier L, Mareschal J-C, Jaupart C, Moresi L-N, Kaula WM (2000) What the mantle sees: the effects of continents on mantle heat flow. In: Richards MA, Gordon RG, Van Der Hilst RD (eds) The history and dynamics of global plate motions. Geophys Monogr 121:95–112. AGU, Washington, DC

    Google Scholar 

  • Lenkey L, Dövényi P, Horváth F, Cloetingh SAPL (2002) Geothermics of the Pannonian basin and its bearing on the neotectonics. EGU Stephan Mueller Spec Publ Ser 3:29–40

    Google Scholar 

  • Lenton TM (1998) Gaia and natural selection. Nature 394(6692):439–447

    Google Scholar 

  • Levin BYu, Mayeva SV (1960) About thermic history of the Earth. Izv Acad Sci USSR Ser Geophys 2:243–252

    Google Scholar 

  • Lewis JS (1974) The temperature gradient in the solar nebula. Science 186:440–443

    Google Scholar 

  • Lewis CL (2000) The dating game: one man’s search for the age of the Earth. Cambridge University Press, Cambridge

    Google Scholar 

  • Lewis CLE (2002) Arthur Holmes’ unifying theory: from radioactivity to continental drift. Geol Soc Lond Spec Publ 192:167–183

    Google Scholar 

  • Lewis TJ, Hyndman RD, Fluck P (2003) Heat flow, heat generation and crustal temperatures in the northern Canadian cordillera: thermal control on tectonics. J Geophys Res 108:B6. doi:10.1029/2002JB002090

    Google Scholar 

  • Li J, Agee CB (1996) Geochemistry of mantle-core differentiation at high pressure. Nature 381:686–689

    Google Scholar 

  • Lide DR (ed) (2005) CRC handbook of chemistry and physics, 86th edn

    Google Scholar 

  • Loaiciga HA, Valdes JB, Vogel R, Garvey J, Schwarz H (1996) Global warming and the hydrologic cycle. J Hydrol 174:83–127

    Google Scholar 

  • Louden KE, Mareschal J-C (1996) Measurements of radiogenic heat production on basement samples from sites 897 and 9001. In: Whitmarsh RB, Sawyer DS, Klaus A, Masson DG (eds) Proceedings of the Ocean drilling program, scientific results, vol 14, p 44

    Google Scholar 

  • Louden KE, Sibuet J-C, Harmegnies F (1997) Variations in heat flow across the ocean—continent transition in the Iberia abyssal plain. Earth Planet Sci Lett 151(3–4):233–254

    Google Scholar 

  • Lowe DR, Tice MM (2004) Geologic evidence for Archean atmospheric and climatic evolution: Fluctuating levels of CO2, CH4, and O2 with an overriding tectonic control. Geology 32(6):493–496

    Google Scholar 

  • Lubimova EA (1953) Role of diffusivity in heat regime of Earth. Izv Acad Sci USSR Ser Geophys (6)

    Google Scholar 

  • Lubimova EA (1955) About heating of Earth’s deeps during the process of Earth formation. Izv Acad Sci USSR Ser Geophys 5:416–424 (in Russian)

    Google Scholar 

  • Lubimova EA (1958) Thermal history of the earth with consideration of the variable thermal conductivity of the mantle. Geophysics 1:115–134

    Google Scholar 

  • Lubimova EA (1967) Theory of thermal state of the Earth’s mantle. In: Gaskell TF (ed) The Earth’s mantle. Academic Press, London, pp 231–323

    Google Scholar 

  • Lubimova EA (1968a) Thermal history of the Earth. In: The Earth’s crust and upper mantle. Geophys Monogr Ser 13:63–77. American Geophysical Union, Washington, DC

    Google Scholar 

  • Lubimova EA (1968b) Thermics of the Earth and Moon. Nauka, Moscow (in Russian)

    Google Scholar 

  • Lubimova EA, Firsov FV (1966) Determination of heat flow in some areas of Middle Asia. In: Chitarov NI (ed) Problems of deep heat flow. Nauka, Moscow, pp 88–105 (in Russian)

    Google Scholar 

  • Lubimova EA, Mayeva SV (1982) Models of the thermal evolution of the Earth. Izv Acad Sci USSR Ser Geophys (6):83–93

    Google Scholar 

  • Lubimova EA, Lusova LN, Firsov FV (1964) Basics of heat flow from Earths depths determination and results of measurements. In: Geothermal researches, Nauka, Moscow, pp 5–103 (in Russian)

    Google Scholar 

  • Lysak SV, Sherman SI (2002) Terrestrial heat flow in areas of dynamic influence of faults in the Baikal rift zone. EGU Stephan Mueller Spec Publ Ser 2:153–160

    Google Scholar 

  • MacDonald GJF (1959) Calculations on the thermal history of the Earth. J Geophys Res 64:1967–2000

    Google Scholar 

  • MacDonald GJF (1962) The Moon and its interior. Astronautics 7(7):14–18

    Google Scholar 

  • Mackenzie FT (1998) Our changing planet: an introduction to earth system science and global environmental change. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Majorowicz J (1978) Mantle heat flow and geotherms for major tectonic units in central Europe. Pure Appl Geoph 117(1–2):109–123

    Google Scholar 

  • Marakushev AA (1999). The origin of Earth and Nature of its endogenic activity. Moscow (in Russian)

    Google Scholar 

  • Mareschal J-C (2010) Interactive comment on “Earth’s surface heat flux” by JH Davies and DR Davies. Solid Earth Discuss 1:C7–C9

    Google Scholar 

  • Mareschal J-C, Jaupart C (2006) Archean thermal regime and stabilization of the cratons. Geophys Monogr 164:61–73

    Google Scholar 

  • Mareschal J-C, Jaupart C, Gariépy C, Cheng L-Z, Guillou-Frottier L, Bienfait G, Lapointe R (2000a) Heat flow and deep thermal structure near the edge of the Canadian Shield. Can J Earth Sci 37:399–414

    Google Scholar 

  • Mareschal JC, Poirier A, Rolandone F, Bienfait G, Gariéepy C, Lapointe R, Jaupart C (2000b) Low mantle heat flow at the edge of the North American continent, Voisey Bay, Labrador. Geophys Res Lett 27(6):823–826

    Google Scholar 

  • Mareschal JC, Nyblade A, Perry HKC, Jaupart C, Bienfait G (2004) Heat flow and deep lithospheric thermal structure at Lac de Gras, Slave Province, Canada. Geophys Res Lett 31:L12611

    Google Scholar 

  • Marshall J, Cuzzi J (2001) Electrostatic enhancement of coagulation in protoplanetary nebulae. Transaction of the 32nd Lunar Planetary Science Conference, Houston, Texas, Abstract 1262

    Google Scholar 

  • Marshall JS, Pounder ER, Stewart RW (1967) Physics. Macmillan of Canada, Toronto

    Google Scholar 

  • Martignole J, Reynolds P (1997) 40Ar/39Ar thermochronology along a western Québec transect of the Grenville Province, Canada. J Metamorph Geol 15(2):283–296

    Google Scholar 

  • Marty B, Meibom A (2007) Noble gas signature of the Late Heavy Bombardment in the Earth’s atmosphere. eEarth 2:43–49

    Google Scholar 

  • Mayer JR (1848) Beiträge zur Dynamik des Himmels in populärer Darstellung. Heilbronn, Landherr

    Google Scholar 

  • Mayer JR (1867) Die Mechanik der Wärme in gesammelten Schriften. Stuttgart Cotta

    Google Scholar 

  • McCall GJ (1973) Meteorites and their origins. Wiley, New York

    Google Scholar 

  • McCrea WH (1960) The origin of the Solar System. Proc R Soc Lond A 256:245–266

    Google Scholar 

  • McKenzie DP (1978) Active tectonics of the Alpine-Himalayan Belt: the Aegean Sea and surrounding regions. Geophys J Roy Astron Soc 55:217–254

    Google Scholar 

  • McLaren S, Sandiford M, Hand M, Neumann N, Wyborn N, Bastrakova I (2002) The hot southern continent: heat flow and heat production in Australian Proterozoic terranes, Chap 12, vol 22. Geological Society of Australia Special Publication, pp 151–161

    Google Scholar 

  • McLaren S, Sandiford M, Hand M, Neumann N, Wyborn N, Bastrakova I (2003) The hot southern continent: heat flow and heat production in Australian Proterozoic terranes. GSA Spec Pap 372:157–167

    Google Scholar 

  • McLaren S, Sandiford M, Powell R, Neumann N, Woodhead J (2006) Palaeozoic intraplate crustal anatexis in the Mount Painter Province, South Australia: timing, thermal budgets and the role of crustal heat production. J Petrol 47(12):2281–2302

    Google Scholar 

  • McLennan SM, Taylor SR, Hemming SR (2006) Composition, differentiation, and evolution of continental crust: constraints from sedimentary rocks and heat flow. In: Brown M, Rushmer T (eds) Evolution and differentiation of the continental crust. Cambridge University Press, Cambridge, pp 92–134

    Google Scholar 

  • McSween HY Jr (1993) Stardust to planets. St. Martin’s Griffin, New York

    Google Scholar 

  • McSween HY (1999) Meteorites and their planet parents, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Meert JG, Nédélec A, Hall C (2003) The stratoid granites of central Madagascar: paleomagnetism and further age constraints on neoproterozoic deformation. Precambr Res 120(1–2):101–129

    Google Scholar 

  • Mekhtiev ShF, Mirzajanzadeh AKh, Aliyev SA (1971) Geothermal investigation of oil and gas fields. Nedra, Moscow (in Russian)

    Google Scholar 

  • Melosh HJ (1990) Giant impacts and the thermal state of the early Earth. In: Newsom H, Jones J (eds) Origin of the Earth. Oxford University Press, Oxford, pp 69–83

    Google Scholar 

  • Mezger K, Hanson GN, Bohlen SR (1989) High-precision U-Pb ages of metamorphic rutile: application to the cooling history of high-grade terranes. Earth Planet Sci Lett 96(1–2):106–118

    Google Scholar 

  • Mezger K, Rawnsley CM, Bohlen SR, Hanson GN (1991) U-Pb garnet, sphene, monazite, and rutile ages: Implications for the duration of high grade metamorphism and cooling histories, Adirondack Mts, New York. J Geol 99:415–428

    Google Scholar 

  • Michaut Ch, Jaupart C, Mareschal J-C (2009) Thermal evolution of cratonic roots. Lithos 109:47–60

    Google Scholar 

  • Mojzsis SJ, Harrison TM, Pidgeon RT (2001) Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4.300 Myr ago. Nature 409:178–181

    Google Scholar 

  • Monin AS (1977) History of the Earth. Nauka, Leningrad (in Russian)

    Google Scholar 

  • Morgan P (1985) Crustal radiogenic heat production and the selective survival of ancient continental crust. J Geophys Res 90(Suppl):C561–C570

    Google Scholar 

  • Morgan P, Swanberg ChA (1978) Heat flow and the geothermal potential of Egypt. Pure Appl Geophys 117:213–226

    Google Scholar 

  • Morris RG, Sinclair HD, Yelland AJ (1998) Exhumation of the Pyrenean orogen: implications for sediment discharge. Basin Res 10:69–85

    Google Scholar 

  • Morse JW, Mackenzie FT (1998) Hadean Ocean carbonate geochemistry. Aquat Geochem 4(3–4):301–319

    Google Scholar 

  • Mottaghy D, Schellschmidt R, Popov YA, Clauser C, Kukkonen IT, Nover G, Milanovsky S, Romushkevich RA (2005) New heat flow data from the immediate vicinity of the Kola super-deep borehole: Vertical variation in heat flow confirmed and attributed to advection. Tectonophysics 401:119–142

    Google Scholar 

  • Mposkos E, Perraki M (2001) High pressure Alpine metamorphism of the pelagonian allochton in the Kastania area (Southern Vermion), Greece. Bull Geol Soc Greece V:XXXIV/3, 939–947

    Google Scholar 

  • Mukhin LM, Pimenov KYu (2002) Impact hot spots on the cold surface of the early Earth. Planet Space Sci 50(1):41–43

    Google Scholar 

  • Muñoz M (2005) Approaches to the relatively hot Altiplano plateau. In: Proceedings of the 6th international symposium on Andean geodynamics, Barcelona, pp 544–547

    Google Scholar 

  • Nagatha T (1961) Rock magnetism. Maruzen Co., Tokyo

    Google Scholar 

  • Nagihara S, Jones KO (2005) Geothermal heat flow in the northeast margin of the Gulf of Mexico. AAPG Bull 89(6):821–831

    Google Scholar 

  • Nakazawa K, Ida S, Ohtsuki K (1993) Elementary processes in planetary accretion. In: Oya H (ed) Primitive solar nebula and origin of planets. Terra Scientific Publishing Company, Tokyo, pp 265–280

    Google Scholar 

  • Neumann N, Sandiford M, Foden J (2000) Regional geochemistry and continental heat flow: implications for the origin of the South Australian heat flow anomaly. Earth Planet Sci Lett 183(1–2):107–120

    Google Scholar 

  • Newman MJ, Rood RT (1977) Implications of solar evolution for the Earth’s early atmosphere. Science 198:1035–1037

    Google Scholar 

  • Norden B, Förster A, Balling N (2009) What causes the increased heat flow of the Northeast German Basin? EGU General Assem. 2009, Geophys Research Abstracts, vol 11, EGU2009-8358

    Google Scholar 

  • Norman MD, Borg LE, Nyquist LE, Bogard DD (2003) Chronology, geochemistry, and petrology of a ferroan noritic anorthosite clast from Descartes breccia 67215: clues to the age, origin, structure, and impact history of the lunar crust. Meteor Planet Sci 38:645–661

    Google Scholar 

  • Norris TL, Gancarz AJ, Rokop DJ, Thomas KW (1983) Half-life of Al-26. J Geophys Res 88(Suppl):B331–B333

    Google Scholar 

  • NRC—National Research Council (1964) Solid-earth geophysics: survey and outlook. National Research Council (U.S.). Panel on solid earth problems, Washington, National Academy of Science Publications, No. 1231

    Google Scholar 

  • Nyblade AA, Pollack HN (1993) A global analysis of heat flow from Precambrian terrains: implications for the thermal structure of Archean and Proterozoic lithosphere. J Geophys Res 98(B7):12207–12218

    Google Scholar 

  • Nyblade AA, Pollack HN, Jones DL, Podmore F, Mushayandebvu M (1990) Terrestrial heat flow in East and Southern Africa. J Geophys Res 95(B11):17371–17384

    Google Scholar 

  • Ohtani E (1985) The primordial terrestrial magma ocean and its implication for stratification of the mantle. Phys Earth Planet Int 38:70–80

    Google Scholar 

  • Ohtani E, Hirao N, Kondo T, Ito M, Kikegawa T (2005) Iron-water reaction at high pressure and temperature, and hydrogen transport into the core. Phys Chem Minerals 32(1):77–82

    Google Scholar 

  • Okuchi T (1997) Hydrogen partitioning into molten iron at high pressure: implications for Earth’s core. Science 278:1781–1784

    Google Scholar 

  • Okuchi T (1998) The melting temperature of iron hydride at high pressures and its implications for the temperature of the Earth’s core. J Phys Condens Matter 10:11595–11598

    Google Scholar 

  • Okudaira T, Hayasaka Y, Himeno O, Watanabe K, Sakurai Y, Ohtomo Y (2001) Cooling and inferred exhumation history of the Ryoke metamorphic belt in the Yanai district, south-west Japan: Constraints from Rb–Sr and fission-track ages of gneissose granitoid and numerical modelling. I Arc 10(2):98–115

    Google Scholar 

  • Olby RC (1996) Companion to the history of modern science. Routledge, London

    Google Scholar 

  • Ollinger D, Baujard C, Kohl T, Moeck I (2010) Temperature inversion derived from deep borehole data in the Northeastern German Basin. Geothermics 39:46–58

    Google Scholar 

  • Omar GI, Onstott TC, Hoek J (2003) The origin of deep subsurface microbial communities in the Witwatersrand Basin, South Africa as deduced from apatite fission track analyses. Geofluids 3(1):69–80

    Google Scholar 

  • Omori S, Komabayashi T (2007) Subduction zone: the water channel to the mantle. In: Yuen DA, Maruyama S, Karato S-I, Windley BF (eds) Superplumes: beyond plate tectonics, Part II. Springer, New York, pp 113–138

    Google Scholar 

  • Oreskes N (1999) The rejection of continental drift: theory and method in American Earth Science. Oxford University Press, Oxford

    Google Scholar 

  • Orlyonok VV (1980) Physical basics of Earth’s perispher evolution. Leningrad State University, Leningrad (in Russian)

    Google Scholar 

  • Orlyonok VV (2000) Foundations of geophysics. Kaliningrad (in Russian)

    Google Scholar 

  • Osako M, Ito E, Yoneda A (2001) Thermal diffusivity and thermal conductivity of olivine and garnet under pressures up to 8 GPa and at temperatures up to 1000 K. In: Proceedings of the conference “Transport of materials in the dynamic Earth”, Kurayoshi, Japan, 3.17, pp 83–85

    Google Scholar 

  • Pavlov AA, Kasting JF, Brown LL, Rages KA, Freedman R (2000) Greenhouse warming by CH4 in the atmosphere of early Earth. J Geophys Res 105(E5):11981–11990

    Google Scholar 

  • Pechersky DM, Bagin VI, Brodskaya SY, Sharonov ZV (1975) Magnetism and conditions of generation for igneous mountainous rocks. Nauka, Moscow (in Russian)

    Google Scholar 

  • Peck WH, Valley JW, Wilde SA, Graham CM (2001) Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Ga zircons: ion microprobe evidence for high δ18O continental crust and oceans in the Early Archean. Geochim Cosmochim Acta 65(22):4215–4229

    Google Scholar 

  • Peck WH, Valley JW, Graham CM (2003) Slow oxygen diffusion rates in igneous zircons from metamorphic rocks. Am Mineral 88(7):1003–1014

    Google Scholar 

  • Pekeris CL (1935) Thermal convection in the interior of the Earth. Mon Not R Astron Soc Geophys Suppl 3:343–367

    Google Scholar 

  • Perraki M, Mposkos E (2001) New constraints for the Alpine HP metamorphism of the Ios basement, Cyclades, Greece. Bull Geol Soc Greece XXXIV/3:977–984

    Google Scholar 

  • Petterson H (1949) Exploring the bed of the ocean. Nature (4168):468–470

    Google Scholar 

  • Pfister M, Rybach L, Simsek S (1998) Geothermal reconnaissance of the Marmara Sea region (NW Turkey): surface heat flow density in an area of active continental extension. Tectonophysics 291:77–89

    Google Scholar 

  • Pilchin A (1983) Geothermal regime of Earth’s crust of the Kura depression and its influence on pressure distribution in it. PhD Thesis, Institute of Geophysics of the Georgia Academy of Sciences, Tbilisi (in Russian)

    Google Scholar 

  • Pilchin AN (1985) On the origin of mud volcanoes. Sov Geol (Sovetskaia Geologiya) 10:78–81 (in Russian)

    Google Scholar 

  • Pilchin AN (2011) Magnetite: the story of the mineral’s formation and stability. In: Angrove DM (ed) Magnetite: structure, properties and applications, Chap 1. Nova Science Publishers, New York, pp 1–99

    Google Scholar 

  • Pilchin AN, Eppelbaum LV (2006) Iron and its unique role in earth evolution. In: Monograph, vol 9. Mexican Geophysical Society

    Google Scholar 

  • Pilchin AN, Eppelbaum LV (2007) Stability of iron oxides in the Earth and their role in the formation of rock magnetism. Acta Geofis 55(2):133–153

    Google Scholar 

  • Pilchin AN, Eppelbaum LV (2008a) Iron content of magmatic rocks as a marker of mantle heterogeneity. Transactions of the 33rd international geological conference, Oslo, Norway, EID05421P

    Google Scholar 

  • Pilchin AN, Eppelbaum LV (2008b) Some causes of initial mantle heterogeneity. Transactions of the 33rd international geological conference, Oslo, Norway, EID05422P

    Google Scholar 

  • Pilchin AN, Eppelbaum LV (2009) The early earth and formation of the lithosphere. In: Anderson JE, Coates RW (eds) The lithosphere: geochemistry, geology and geophysics, Chap 1. Nova Science Publishers, New York, pp 1–68

    Google Scholar 

  • Pilchin A, Eppelbaum L (2012) The early Earth formation and evolution of the lithosphere in the Hadean–Middle Archean. In: Sato F, Nakamura S (eds) Encyclopedia of earth science research, vol 1, Chap 1, pp 1–93

    Google Scholar 

  • Pinet C, Jaupart C (1987) The vertical distribution of radiogenic heat production in the Precambrian crust of Norway and Sweden: geothermal implications. Geophys Res Lett 14(3):260–263

    Google Scholar 

  • Pollack HN (1980) The heat flow from the earth: a review. In: Davies PA, Runcorn SK (eds) Mechanisms of continental drift and plate tectonics. Academic Press, London, pp 183–192

    Google Scholar 

  • Pollack HN (1982) The heat flow from the Continents. Ann Rev Earth Planet Sci 10:459–481

    Google Scholar 

  • Pollack HN (1997) Thermal characteristics of the Archaean. In: de Wit MJ, Ashwal MD (eds) Greenstone belts. Clarendon Press, Oxford, pp 223–232

    Google Scholar 

  • Pollack HN, Chapman DS (1977a) On the regional variation of heat flow, geotherms and the thickness of the lithosphere. Tectonophysics 38:279–296

    Google Scholar 

  • Pollack HN, Chapman DS (1977b) Mantle heat flow. Earth Planet Sci Lett 2:174–184

    Google Scholar 

  • Pollack HN, Chapman DS, Cermak V (1979) Global heat flow with special reference to the region of Europe. In: Cermak V, Rybach L (eds) Terrestrial heat flow in Europe. Springer, Berlin, pp 41–48

    Google Scholar 

  • Pollack HN, Hurter SJ, Johnson JR (1993) Heat flow from the Earth’s interior: analysis of the global data set. Rev Geophys 31(3):267–280

    Google Scholar 

  • Polyak BG, Smirnov YA (1968) Relationship between terrestrial heat flow and the tectonics of continents. Geotectonics 4:205–213

    Google Scholar 

  • Popov YA, Pimenov VP, Pevzner LA, Romushkevich RA, Popov EY (1998) Geothermal characteristics of the Vorotilovo deep borehole drilled into the Puchezh-Katunk impact structure. Tectonophysics 291:205–223

    Google Scholar 

  • Popov YA, Pevzner SL, Pimenov VP, Romushkevich RA (1999) New geothermal data from the Kola superdeep well SG-3. Tectonophysics 306(3–4):345–366

    Google Scholar 

  • Powell WG, Chapman DS, Balling N, Beck AE (1988) Continental heat-flow density. In: Hänel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat-flow density determination. Kluwer Academic Publishers, Dordrecht, pp 167–222

    Google Scholar 

  • Prestwich J (1884) On underground temperatures, with observations on the conductivity of rocks, on the thermal effects of saturation and imbibition, and on a special source of heat in mountain ranges. Proc R Soc Lond 38:161–168

    Google Scholar 

  • Prestwich J (1886) On underground temperatures, with observations on certain causes which influence the conductivity of rocks, on the thermal effects of saturation and imbibition, and on a source of heat in mountain ranges. Proc R Soc Lond 41(246):1–116

    Google Scholar 

  • Quetelet A (1837) Sur les variations des températures de la terre (1er mémoire). Mémoires de l’Académie impériale et royale de Bruxelles X:88

    Google Scholar 

  • Quetelet A (1839) Résumé des observations météorologicues el des observations sur les températures de la Terre laites en 1838 à l’Observatoire royal de Bruxelles. Mémoires de l’Académie impériale et royale de Bruxelles XII:1–12

    Google Scholar 

  • Quetelet A (1840) Sur les variations annuelles de la température de la Terre à différentes profondeurs (2e mémoire). Mémoires de l’Académie impériale et royale de Bruxelles XIII:1–52

    Google Scholar 

  • Quetelet E (1875–1876) Sur la température de l’air à Bruxelles, 1833–1872 (supplément). Mémoires de l’Académie impériale et royale de Bruxelles XLI(Part II):1–52

    Google Scholar 

  • Radau R (1880) The interior of the earth. Popular Sci Mon (July):289–303

    Google Scholar 

  • Ramanathan V, Barkstrom BR, Harrison EF (1989) Climate and the earth’s radiation budget. Phys Today 42(5):22–32

    Google Scholar 

  • Rao RUM, Rao GV, Reddy GK (1982) Age dependence of continental heat flow—Fantasy and facts. Earth Planet Sci Lett 59:288–302

    Google Scholar 

  • Ray L, Senthil KP, Reddy GK, Roy S, Rao GV, Srinrvasan R, Rao RUM (2003) High mantle heat flow in a Precambrian granulite province: evidence from southern India. J Geophys Res 108:B2, ETG6.1–ETG6.13

    Google Scholar 

  • Ray L, Roy S, Srinivasan R (2008) High radiogenic heat production in the Kerala Khondalite Block, Southern Granulite Province, India. Int J Earth Sci 97(2):257–267

    Google Scholar 

  • Revelle RR, Maxwell AE (1952) Heat flow through the floor of the Eastern North Pacific Ocean. Nature 170:199–202

    Google Scholar 

  • Rezanov IA (2002) History of the cosmogonic hypothesis of O. Yu. Shmidt. Probl Hist Sci Tech (4) (in Russian)

    Google Scholar 

  • Richter FM (1985) Models for the Archean thermal regime. Earth Planet Sci Lett 73:350–360

    Google Scholar 

  • Richter FM (1986) Kelvin and the age of the Earth. J Geol 94:395–401

    Google Scholar 

  • Richter FM, Mendybaev RA, Davis AM (2006) Conditions in the protoplanetary disk as seen by the type B CAIs. Meteor Planet Sci 41(1):83–93

    Google Scholar 

  • Righter K, Drake MJ (1997a) A magma ocean on Vesta: core formation and petrogenesis of eucrites and diogenites. Meteorit Planet Sci 32:929–944

    Google Scholar 

  • Righter K, Drake MJ (1997b) Metal-silicate equilibrium in a homogeneously accreting earth: new results for Re. Earth Planet Sci Lett 146(3–4):541–553

    Google Scholar 

  • Righter K, Drake MJ, Scott E (2006) Compositional relationships between meteorites and terrestrial planets. In: Lauretta DS, McSween Jr HY (eds), Meteorites and the early Solar System II (Space Science). University of Arizona Press, Tucson

    Google Scholar 

  • Ringwood AE (1960) Some aspects of the thermal evolution of the Earth. Geochim Cosmochim Acta 20(3–4):241–259

    Google Scholar 

  • Robinson AH, Wallis HM (1967) Humboldt’s map of isothermal lines: a milestone in thematic cartography. Cartogr J 4(2):119–123

    Google Scholar 

  • Rolandone F, Jaupart C, Mareschal J-C, Gariépy C, Bienfait G, Carbonne C, Lapointe R (2002) Surface heat flow, crustal temperatures and mantle heat flow in the Proterozoic Trans-Hudson Orogen, Canadian Shield. J Geophys Res 107(2341):1–19

    Google Scholar 

  • Roy S, Rao RUM (2000) Heat flow in the Indian shield. J Geophys Res 105:25587–25604

    Google Scholar 

  • Roy RF, Blackwell DD, Birch F (1968) Heat generation of plutonic rocks and continental heat flow provinces. Earth Planet Sci Lett 5:1–12

    Google Scholar 

  • Roy S, Ray L, Bhattacharya A, Srinivasan R (2008) Heat flow and crustal thermal structure in the Late Archaean Closepet Granite batholith, south India. Int J Earth Sci 97(2):245–256

    Google Scholar 

  • Rubie DC, Gessmann CK, Frost DJ (2004) Partitioning of oxygen during core formation on the Earth and Mars. Nature 429:58–61

    Google Scholar 

  • Rubin AE, Mittlefehldt DW (1993) Evolutionary history of the mesosiderite asteroid: a chronologic and petrologic synthesis. Icarus 101(2):201–212

    Google Scholar 

  • Rudnick RL, Fountain DM (1995) Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys 33(3):267–309

    Google Scholar 

  • Rudnick RL, Nyblade AA (1999) The thickness and heat production of Archean lithosphere: constraints from xenolith thermobarometry and surface heat flow. In: Fei Y, Bertka CM, Mysen BO (eds) Mantle petrology: field observations and high pressure xperimentation: a tribute to Francis R. (Joe) Boyd. The Geochemical Society, pp 3–12

    Google Scholar 

  • Russell JK, Kopylova MG (1999) A steady-state conductive geotherm for the north central Slave, Canada: inversion of petrological data from the Jericho Kimberlite pipe. J Geophys Res 104:7089–7101

    Google Scholar 

  • Rutherford E (1903) Radioactive change. Phil Mag 5:576–591

    Google Scholar 

  • Rybach L (1976) Radioactive heat production in rocks and its relation to other petrophysical parameters. Pure Appl Geophys 114(2):309–317

    Google Scholar 

  • Rybach L (1978) The relationship between seismic velocity and radioactive heat production in crustal rocks: An exponential law. Pure Appl Geophys 117(1–2):75–82

    Google Scholar 

  • Rybach L, Buntebarth G (1982) Relationships between the petrophysical properties density, seismic velocity, heat generation, and mineralogical consitution. Earth Planet Sci Lett 57:367–376

    Google Scholar 

  • Rybach L, Buntebarth G (1984) The variation of heat generation, density and seismic velocity with rock type in the continental lithosphere. Tectonophysics 103(1–4):335–344

    Google Scholar 

  • Rybach L, Cermák V (1987) The depth dependence of heat production in the continental lithosphere, derived from seismic velocities. Geophys Res Lett 14(3):311–313

    Google Scholar 

  • Safronov VS (1959) About initial temperature of Earth. Izv Acad Sci USSR Ser Geophys (1) (in Russian)

    Google Scholar 

  • Safronov VS (1969) Evolution of the protoplanetary cloud and formation of the earth and the planets. Nauka, Moscow, 206 p (in Russian)

    Google Scholar 

  • Safronov VS (1978) The heating of the Earth during its formation. Icarus 33(1):3–12

    Google Scholar 

  • Safronov VS, Kozlovskaya SV (1977) Heating of Earth by its bombardment by forming it bodies. Isv Acad Sci USSR Phys Earth 10:3–13 (in Russian)

    Google Scholar 

  • Sagan C, Chyba C (1997) The early faint Sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science 276(5316):1217–1221

    Google Scholar 

  • Sagan C, Mullen G (1972) Earth and Mars: evolution of atmospheres and surface temperatures. Science 177:52–56

    Google Scholar 

  • Saltzman B (1984). Advances in Geophysics, vol 26. Academic Press, London, 349 p

    Google Scholar 

  • Schmid R (2000) Geology of ultra-high-pressure rocks from the Dabie Shan, Eastern China. PhD Thesis, Institut für Geowissenschaften, University of Potsdam

    Google Scholar 

  • Schmidt OY (1949) Four lectures on the theory of the Earth’s origins. Academy of Science of USSR Publishers, Moscow

    Google Scholar 

  • Schmidt O (2001) A theory of earth’s origin: four lectures. University Press of the Pacific (originally published in Russian in 1949)

    Google Scholar 

  • Schott RC, Johnson CM (2001) Garnet-bearing trondhjemite and other conglomerate clasts from the Gualala basin, California: Sedimentary record of the missing western portion of the Salinian magmatic arc? Geol Soc Am Bull 113(7):870–880

    Google Scholar 

  • Schubert G, Cassen P, Young RE (1979) Core cooling by subsolidus mantle convection. Phys Earth Planet Int 20:194–208

    Google Scholar 

  • Schubert G, Stevenson D, Cassen P (1980) Whole Planet cooling and the radiogenic heat source contents of the Earth and Moon. J Geophys Res 85(B5):2531–2538

    Google Scholar 

  • Schubert G, Turcotte DL, Olson P (2001) Mantle convection in the Earth and Planets, 2 vols. Cambridge University Press, Cambridge

    Google Scholar 

  • Schulze DJ, Valley JW, Spicuzza KJ (2000) Coesite eclogites from the Roberts Victor kimberlite, South Africa. Lithos 54:23–32

    Google Scholar 

  • Sclater JG, Jaupart C, Galson D (1980) The heat flow through oceanic and continental crust and the heat loss of the Earth. Rev Geophys Space Phys 18:269–311

    Google Scholar 

  • Scott ERD, Krot AN (2005) Thermal processing of silicate dust in the solar nebula: clues from primitive chondrite matrices. Astrophys J 623:578

    Google Scholar 

  • Şerban DZ, Nielsen SB, Demetrescu C (2001) Transylvanian heat flow in the presence of topography, paleoclimate and groundwater flow. Tectonophysics 335(3–4):331–344

    Google Scholar 

  • Sertorio L, Tinetti G (2001) Available energy for life on a planet with or without stellar radiation. Nuovo Cimento 24 C(3):421–443

    Google Scholar 

  • Sharma KK, Bal KD, Parshad R, Lal N, Nagpaul KK (1980) Tectonophysics 70(1–2):135–158

    Google Scholar 

  • Shaviv NJ (2003) Toward a solution to the early faint Sun paradox: a lower cosmic ray flux from a stronger solar wind. J Geophys Res 108(A12):1437

    Google Scholar 

  • Shen JJ, Papanastassiou DA, Wasserburg GJ (1996) Precise Re-Os determinations and systematics of iron meteorites. Geochim Cosmochim Acta 60(15):2887–2900

    Google Scholar 

  • Shi X, Zhou D, Zhang Y (2000) Lithospheric thermal-rheological structures of the continental margin in the northern South China Sea. Chinese Sci Bull 45(22):2107–2112

    Google Scholar 

  • Shwartsman YG (2001) Heat condition of the lithosphere and latest changes of climat on European North. In: The lithosphere and hydrosphere of European North of Russia. Ural Branch of the Russian Academy of Science, pp 130–154 (in Russian)

    Google Scholar 

  • Simpson GG (1943) Mammals and the nature of continents. Am J Sci 241:1–31

    Google Scholar 

  • Slagstad T (2006) Did hot, high heat-producing granites determine the location of the Oslo Rift? Tectonophysics 412(1–2):105–119

    Google Scholar 

  • Slagstad T, Balling N, Elvebakk H, Midttømme K, Olesen O, Olsen L, Pascal Ch (2009) Heat-flow measurements in Late Palaeoproterozoic to Permian geological provinces in south and central Norway and a new heat-flow map of Fennoscandia and the Norwegian-Greenland Sea. Tectonophysics 473:341–361

    Google Scholar 

  • Sleep NH, Zahnle K, Neuhoff PS (2001) Initiation of clement surface conditions on the earliest Earth. Proc Natl Acad Sci USA 98(7):3666–3672

    Google Scholar 

  • Slichter LB (1941) Cooling of the Earth. Bull Geol Soc Am 52(4):561–600 Part 2

    Google Scholar 

  • Smith C, Wise MN (1989) Energy and empire: a biographical study of Lord Kelvin. Cambridge University Press, Cambridge, 898 p

    Google Scholar 

  • Smyslov AA (1974) Uranium and Thorium in the Earth’s crust. Nedra, Leningrad, 232 p (in Russian)

    Google Scholar 

  • Solomatov VS (2000) Fluid dynamics of a terrestrial magma ocean. In: Canup R, Righter K (eds) Origin of the Earth and Moon. University of Arizona Press, Tucson, Arizona, pp 323–338

    Google Scholar 

  • Song S, Yang J, Liou JG, Wu C, Shi R, Xu Z (2003) Petrology, geochemistry and isotopic ages of eclogites from the Dulan UHPM Terrane, the North Qaidam, NW China. Lithos 70:195–211

    Google Scholar 

  • Sorokhtin OG, Ushakov SA (2002) Evolution of the Earth: text book. Moscow State University, Moscow (in Russian)

    Google Scholar 

  • Speece MA, Bowen TD, Folcik JL, Pollack HN (1985) Analysis of temperatures in sedimentary basins: the Michigan Basin. Geophysics 50(8):1318–1334

    Google Scholar 

  • Spichak V, Zakharova O (2013) Electromagnetic Geothermometer. Scientific World, Moscow (in Russian)

    Google Scholar 

  • Spohn T, Schubert G (1991) Thermal equilibration of the Earth following a giant impact. Geophys J Int 107:163–170

    Google Scholar 

  • Springer M, Förster A (1998) Heat-flow density across the Central Andean subduction zone. Tectonophysics 291:123–139

    Google Scholar 

  • Stacey FD (1992) Physics of the Earth, 3rd edn. Brookfield Press, Brisbane

    Google Scholar 

  • Stacey FD (2000) Kelvin’s age of the earth paradox revisited. J Geophys Res 105(13):13155–13158

    Google Scholar 

  • Stapff F (1883) On some results of the observations on underground temperature during the construction of the St. Gothard Tunnel. Trans North Engl Inst Min Mech Eng, XXXIII, pp 19–30

    Google Scholar 

  • Stein CA (1995) Heat flow of the Earth. Global Earth Physics. In: A handbook of physical constants. AGU Reference Shelf 1, pp 144–158

    Google Scholar 

  • Stevenson DJ (2008) A planetary perspective on the deep Earth. Nature 451:261–265

    Google Scholar 

  • Stewart JA (1990) Drifting continents and colliding paradigms: perspectives on the geoscience revolution. Indiana University Press, Bloomington, 304 p

    Google Scholar 

  • Stinner A (2002) Calculating the age of the Earth and the Sun. Phys Educ 37(4):296–305

    Google Scholar 

  • Storm LC, Spear FS (2005) Pressure, temperature and cooling rates of granulite facies migmatitic pelites from the southern Adirondack Highlands, New York. J Metamorph Geol 23(2):107–130

    Google Scholar 

  • Streepey MM, van der Pluijm BA, Essene EJ, Hall CM, Magloughlin JF (2000) Late Proterozoic (ca. 930 Ma) extension in eastern Laurentia. GSA Bull 112(10):1522–1530

    Google Scholar 

  • Strutt RJ (1906) On the distribution of radium in the Earth’s crust. Proc R Soc Lond Ser A (Containing papers of a mathematical and physical character) 78(522):150–153

    Google Scholar 

  • Strutt RJ (1910) On the radium content of basalt. Proc R Soc Lond A 84:377–379

    Google Scholar 

  • Sukumaran PV (2001) Early planetary environments and the origin of life. Resonance 6(10):16–28

    Google Scholar 

  • Suyetnov VV (1963) To the problem of search of structures using heat flow density. Transaction of the Institute of Geological of Dagestan Branch of the USSR Academy of Science, pp 73–76

    Google Scholar 

  • Suyetnov VV, Savin AV, Magomedov AG-G (1980) Some peculiarities of heat flow of left bank of the Astrakhan province. Abstracts of the Conference “Present conditions of methods and eqwipment for geothermal researches”. IVZ PGO “Uralgeologiya” Publishing, Swerdlovsk, pp 43–44

    Google Scholar 

  • Swedenborg E (1734) Opera Philosophica et Mineralia, Principia, vol 1, Leipzig

    Google Scholar 

  • Takahashi E (1990) Speculations on the Archean mantle: missing link between komatiite and depleted garnet peridotite. J Geophys Res 95(B10):15941–15954

    Google Scholar 

  • Thakur M, Blackwell DD (2008) Systematics of crustal radioactivity distribution and implication for mantle thermal evolution through time. AAPG search and discover Article No 90087 2008 AAPG/SEG Student Expo, Houston, Texas

    Google Scholar 

  • Thomson W (1860) On the reduction of observations of underground temperature. Trans R Soc Edinb 22:409

    Google Scholar 

  • Thomson W (1862) On the age of the Sun’s heat. Macmillan’s Mag 5:388–393

    Google Scholar 

  • Thomson W (1878) Problems relating to underground temperature. A fragment. Phil Mag 5(32):370–374

    Google Scholar 

  • Thomson W (Lord Kelvin) (1890) On the secular cooling of the Earth. In: Mathematical and physical papers, vol III, elasticity, heat, electro-magnetism. C.J. Clay and Sons, London, pp 295–311

    Google Scholar 

  • Tikhonov AN (1937) On influence of radioactive decay on the earth crust temperature. Izv Acad Sci USSR Ser Geogr Geophys (3):431–458

    Google Scholar 

  • Tilton GR, Reed GW (1963) Radioactive heat production in eclogite and some ultramafic rocks. In: Gneiss J, Goldberg ED (eds) Earth science and meteoritics. North-Holland, Amsterdam, pp 31–43

    Google Scholar 

  • Tobiska WK, Nusinov AA (2000) Status of ISO draft International Standard for determining solar irradiances (DIS 21348). Phys Chem Earth Part C Solar Terr Planet Sci 25(5–6):387–388

    Google Scholar 

  • Tonks WB, Melosh HJ (1993) Magma ocean formation due to giant impacts. J Geophys Res 98:5319–5333

    Google Scholar 

  • Tozer DC (1959) The electrical properties of the Earth interiors. Phys Chem Earth 3:414–436

    Google Scholar 

  • Tozer DC (1965) Thermal history of the Earth. Geophys J Int 3(2–3):95–112

    Google Scholar 

  • Tozer DC (1967) Towards a theory of thermal convection in the mantle. In: Gaskell TF (ed) The Earth’s mantle. Academic Press, New York, pp 325–353

    Google Scholar 

  • Tozer DC (1972) The present thermal state of the terrestrial planet. Phys Earth Planet Int 6:182–197

    Google Scholar 

  • Turcotte DL (1980) On the thermal evolution of the Earth. Earth Planet Sci Lett 48(1):53–58

    Google Scholar 

  • Turcotte DL, Oxburgh ER (1967) Convection in a mantle with variable physical properties. J Geophys Res 74:1458

    Google Scholar 

  • Turcotte DL, Schubert G (1982) Geodynamics: applications of continuum physics to geological problems. Wiley, New York

    Google Scholar 

  • Turcotte DL, Torrance KE, Hsui AT (1973) Convection in the earth’s mantle. Methods Comput Phys 13:431–454

    Google Scholar 

  • Turcotte DL, Paul D, White WM (2001) Thorium-uranium systematics require layered mantle convection. J Geophys Res 106(B3):4265–4276

    Google Scholar 

  • Urey HC (1952) The planets. Their origin and development. Yel University Press, New Haven

    Google Scholar 

  • Urey HC (1955) The cosmic abundances of potassium, uranium, and thorium and the heat balances of the Earth, the Moon, and Mars. Proc Nat Acad Sci USA 41:127–144

    Google Scholar 

  • Urey HC (1956) The cosmic abundances of potassium, uranium, and thorium and the heat balances of the Earth, the Moon, and Mars. Proc Natl Acad Sci USA 42:889–891

    Google Scholar 

  • Uyeda S (1988) Geodynamics. In: Hänel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat-flow density determination. Kluwer Academic Publishers, Dordrecht, pp 317–351

    Google Scholar 

  • Vacquier V (1998) A theory of the origin of the Earth’s internal heat. Tectonophysics 291(1–4):1–7

    Google Scholar 

  • Valley JW (2006) Early Earth. Elements 2:201–204

    Google Scholar 

  • Valley JW, Peck WH, King EM, Wilde SA (2002) A cool early Earth. Geology 30(4):351–354

    Google Scholar 

  • Valley JW, Lackey JS, Cavosie AJ, Clechenko CC, Spicuzza MJ, Basei MAS, Bindeman IN, Ferreira VP, Sial AN, King EM, Peck WH, Sinha AK, Wei CS (2005) 4.4 billion years of crustal maturation: oxygen isotopes in magmatic zircon. Contrib Mineral Petrol 1–20. doi:10.1007/s00410-005-0025-8

  • Valley JW, Cavosie AJ, Fu B, Peck WH, Wilde SA (2006) Comment on “Heterogeneous Hadean hafnium: evidence of continental crust at 4.4 to 4.5 Ga”. Science 312(5777):1139

    Google Scholar 

  • van den Berg AP, Yuen DA (2002) Delayed cooling of the Earth’s mantle due to variable thermal conductivity and the formation of a low conductivity zone. Earth Planet Sci Lett 199(3–4):403–413

    Google Scholar 

  • van Thienen P, Vlaar NJ, van den Berg AP (2005) Assessment of the cooling capacity of plate tectonics and flood volcanism in the evolution of Earth, Mars and Venus. Phys Earth Planet Int 150:287–315

    Google Scholar 

  • van Waterschoot WAJM, der Gracht V, Willis B, Chamberlin RT, Joly J, Molengraaff GAF, Gregory JW, Wegener A, Schuchert C, Longwell CR, Taylor FB, Bowie W, White D, Singewald Jr JT, Berry EW (1928). Theory of continental drift: a symposium on the origin and movement of land masses both inter-continental and intra-continental, as proposed by Alfred Wegener. American Association of Petroleum Geologists, Tulsa, Oklahoma, USA

    Google Scholar 

  • Vigneresse JL (1988) Heat flow, heat production and crustal structure in peri-Atlantic regions. Earth Planet Sci Lett 87(3):303–312

    Google Scholar 

  • Vinogradov AP (1962) Average content of chemical elements in main kinds of igneous rocks of Earth crust. Geochemistry (Geokhimiya) 7:555–571 (in Russian)

    Google Scholar 

  • Vitorello I, Pollack HN (1980) On the variation of continental heat flow with age and the thermal evolution of continents. J Geophys Res 85(B2):983–995

    Google Scholar 

  • Vitorello I, Hamza VM, Pollack HN (1980) Terrestrial heat flow in the Brazilian highlands. J Geophys Res 85:3778–3788

    Google Scholar 

  • Vityazev AV, and Pechernikova GV (1996) Early differentiation of the earth and problems of composition of Moon. Izv Russ Acad Sci, Phys Solid Earth 31(6):3–16

    Google Scholar 

  • von Buch L (1802) Lettre de. Mr. De Buch à M. A., Pictet, Sur la temperature de quelques sources des environs de Neuchatel. Bibliothèque Britannique. Sci Arts 9(3):261–269

    Google Scholar 

  • von Buch L (1806) Ueber die Temperatur von Rom. Gilbert Ann XXIV:236–241

    Google Scholar 

  • von Helmholtz H (1856) Lecture “On the interaction of natural forces”, Königsberg, 7 Feb 1854. Phil Mag 11(Series 4):489–518

    Google Scholar 

  • von Humboldt A (1817) Des lignes isothermes et de la distribution de la chaleur sur le globe. Mémoires de Physique et de Chimie de la Société d’Arcueil 3:462–602

    Google Scholar 

  • von Humboldt A (1820) On the temperature of the different mines in America. Printed for A. Constable (Edinburgh)

    Google Scholar 

  • von Humboldt A (1868) Cosmos: a sketch of a physical description of the universe, vol V. Henry G Bohn, London (translated from German)

    Google Scholar 

  • Vosteen H-D, Rath V, Clauser Ch, Lammerer B (2003) The thermal regime of the Eastern Alps from inversion analyses along the TRANSALP profile. Phys Chem Earth Parts A/B/C 28(9–11):393–405

    Google Scholar 

  • Voytov GI (2002) To the problem of hydrogen breathing of Earth. In: Degasing of Earth: geodynamics, geofluids, oil and gas. Nedra, Moscow (in Russian)

    Google Scholar 

  • Walferdin M (1837) Observation de la température du puits foré de Grenelle. Comptes rendus de l’Académie des Sciences 4

    Google Scholar 

  • Walker JCG (1985) Carbon dioxide on the early earth. Orig Life Evol Biosph 16(2):117–127

    Google Scholar 

  • Walter MJ, Trønnes RG (2004) Early Earth differentiation. Earth Planet Sci Lett 225(3–4):253–269

    Google Scholar 

  • Warren PH (1990) Lunar anorthosites and the magma-ocean plagioclase-flotation hypothesis: importance of FeO enrichment in the parent magma. Am Mineral 75:46–58

    Google Scholar 

  • Wasserburg GJ, MacDonald GJF, Hoyle F, Fowler WA (1964) Relative contributions of Uranium, Thorium, and Potassium to heat production in the Earth. Science 143(3605):465–467

    Google Scholar 

  • Waterston JJ (1853) On dynamical sequences in Kosmos. Athenaeum, pp 1099–1100

    Google Scholar 

  • Watson JV (1978) Precambrian thermal regimes. Philos Trans R Soc Lond A 288:431–440

    Google Scholar 

  • Weber R (1895) On the temperature variation of the thermal conductivity of rocks. Nature 52:458–459

    Google Scholar 

  • Wegener A (1912) Die Entstehung der Kontinente. Dr. A. Petermanns Mitteilungen aus Justus Perthes’ Geographischer Anstalt 63:185–195, 253–256, 305–309

    Google Scholar 

  • Wen L, Anderson DL (1997) Layered mantle convection: a model for geoid and topography. Earth Planet Sci Lett 146(3–4):367–377

    Google Scholar 

  • Whipple FL (2007) Earth moon and planets. Whipple Press

    Google Scholar 

  • White S (1996) Composition and zoning of garnet and plagioclase in Haast Schist, Northwest Otago, New Zealand: implications for progressive regional metamorphism. NZ J Geol Geophys 39:515–531

    Google Scholar 

  • Willacy K, Klahr HH, Millar TJ, Henning Th (1998) Gas and grain chemistry in a protoplanetary disk. Astron Astrophys 338:995–1005

    Google Scholar 

  • Williams HS (1897) The century’s progress in physics. Harper’s Mon Mag 95(566):258–259

    Google Scholar 

  • Williams Q, Hemley RJ (2001) Hydrogen in the deep Earth. Ann Rev Earth Planet Sci 29:365–418

    Google Scholar 

  • Williams DL, von Herzen RP (1974) Heat loss from the Earth: new estimate. Geology 2:327–328

    Google Scholar 

  • Williams CF, Galanis SP, Grubb FV, Sass JH (2006) Heat flow and geothermal resources of the Alaskan interior. Geol Soc Am Abstr 38(5):14

    Google Scholar 

  • Willis B (1944) Continental Drift: Ein marchen. Am J Sci 242:509–513

    Google Scholar 

  • Wilson WE (1903) Radium and Solar Energy. Nature 68:222

    Google Scholar 

  • Wolf A, Dannemann F (1935) A history of science, technology, and philosophy in the 16th & 17th centuries. George Allen & Unwin, London, 692 p

    Google Scholar 

  • Wood RJ, Walter MJ, Wade J (2006) Accretion of the Earth and segregation of its core. Nature 441:825–833

    Google Scholar 

  • Woolfson MM (2000) The origin and evolution of the solar system. Taylor & Francis, London

    Google Scholar 

  • Woolfson MM (2008) The formation of the solar system: theories old and new. World Scientific Publishing, Singapore

    Google Scholar 

  • Woolum DS, Cassen P (1999) Astronomical constraints on nebular temperatures: implications for planetesimal formation. Meteorit Planet Sci 34(6):897–907

    Google Scholar 

  • Yagi T, Hishinuma T (1995) Iron hydride formed by the reaction of iron, silicate, and water: implications for the light element of the Earth’s core. Geophys Res Lett 22(14):1933–1936

    Google Scholar 

  • Yang H, Kyser K, Ansdell K (1998) Metamorphism of the MacLean Lake and Central Metavolcanic belts, La Ronge domain, Trans-Hudson Orogen: pressure–temperature variations and tectonic implications. Can J Earth Sci 35:905–922

    Google Scholar 

  • Yukutake T (2000) The inner core and the surface heat flow as clues to estimating the initial temperature of the Earth’s core. Phys Earth Planet Int 121(1–2):103–137

    Google Scholar 

  • Zahnle KJ, Kasting JF, Pollack JB (1988) Evolution of a steam atmosphere during Earth’s accretion. Icarus 74:62–97

    Google Scholar 

  • Zaun PE, Wagner GA (1985) Fission-track stability in zircons under geological conditions. Nucl Tracks Radiat Meas 10(3):303–307

    Google Scholar 

  • Zeck HP (1996) Betic-Rif orogeny: subduction of Mesozoic Tethys lithosphere under eastward drifting Iberia, slab detachment shortly before 22 Ma, and subsequent uplift and extensional tectonics. Tectonophysics 254(1–2):1–16

    Google Scholar 

  • Zemtsov A (2005). Alexander von Humboldt’s ideas on volcanism and their influence on Russian scientists. Humboldt Net Int Rev Humboldtian Stud VI:11, 32–38

    Google Scholar 

  • Zhao Z-F, Zheng Y-F, Wei C-S, Gong B (2004) Temporal relationship between granite cooling and hydrothermal uranium mineralization at Dalongshan in China: a combined radiometric and oxygen isotopic study. Ore Geol Rev 25(3–4):221–236

    Google Scholar 

  • Zharkov VI (1958) On the electric conductivity and temperature of the Earth’s mantle. Izv Russ Acad Sci Phys Solid Earth 40:458–470

    Google Scholar 

  • Zharkov VI, Trubitsin VP, Samsonenko LV (1971) Physics of the Earth and Planets. Nauka, Moscow (in Russian)

    Google Scholar 

  • Zuy VI (2007) Structure of heat field of platform cover in Belorussia. D. Sci Thesis, Minsk

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev Eppelbaum .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eppelbaum, L., Kutasov, I., Pilchin, A. (2014). The Thermal Field of the Earth. In: Applied Geothermics. Lecture Notes in Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34023-9_1

Download citation

Publish with us

Policies and ethics