Skip to main content

A General Circulation Model en Route to Intraseasonal Monsoon Chaos

  • Chapter
  • First Online:

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Since the seminal work of Lorenz, chaotic behaviour of truncated atmospheric equations bears conceptual grounds in the issue of weather predictability. As for climatic scales, low-order models of the El Niño–Southern Oscillation system show chaotic motions as well. The gap to General Circulation Models (GCMs) has been bridged in conceptual studies using a coarse spatial resolution—but temporally and physically resolved—tropospheric GCM. Cross sections of its attractor set across the boreal summer hint at an inverse period doubling route (‘out of chaos’) in the active-break cycle of the global monsoon system. These dynamics, best visible in integrals of motion, represent a distinct sub-regime of the seasonal cycle, borne in topological changes between spring and autumn bifurcations. Computational problems of first-generation simulations notwithstanding, the paper summarizes the GCM’s ‘geometry of behaviour’ and its observational analogues. The concluding conceptual discussion updates a ‘monsoon hypothesis’ and addresses hints at the dynamical status and potential evolution of the climate system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abraham, R.H., Shaw, C.D.: Dynamics. The Geometry of Behavior. 2nd edn. Addison-Wesley, Redwood City (1992)

    Google Scholar 

  2. Aleksandrov, V.V., Gates, W.L.: The performance of a coarse-grid version of the OSU two-level atmospheric GCM. Report No. 24. Climatic Research Institute, Oregon State University, Corvallis (1981)

    Google Scholar 

  3. Aleksandrov, V.V., Arkhipov, P.L., Parkhomenko, V.P., Stenchikov, G.L.: A global model of the ocean–atmosphere system, and a study of its sensitivity to changes in CO2 concentration (in Russian). Izv. AN SSSR, Fiz. Atmosf. Okeana 19, 451–458 (1983)

    Google Scholar 

  4. Alexander, R.C., Mobley, R.L.: Monthly average sea-surface temperatures and ice-pack limits on the 1 ∘  global grid. Mon. Weather Rev. 104(2), 143–148 (1976)

    Article  ADS  Google Scholar 

  5. Anderson, J.R., Rosen, R.D.: The latitude–height structure of 40–50 day variations in atmospheric angular momentum. J. Atmos. Sci. 40(6), 1584–1591 (1983)

    Article  ADS  Google Scholar 

  6. Arakawa, A., Lamb, V.R.: Computational design of the basic dynamical processes of the UCLA General Circulation Model. Meth. Comp. Phys. 17, 173–265 (1977)

    MathSciNet  Google Scholar 

  7. Arakawa, A., Katayama, A., Mintz, Y.: Numerical simulation of the general circulation of the atmosphere. Reprint No. 4. Department of Meteorology, University of California, Los Angeles (1968)

    Google Scholar 

  8. Battisti, D.S., Hirst, A.C.: Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci. 46(12), 1687–1712 (1989)

    Article  ADS  Google Scholar 

  9. Budyko, M.I.: The effect of solar radiation variations on the climate of the Earth. Tellus 21(5), 611–619 (1969)

    Article  ADS  Google Scholar 

  10. Carl, P.: Software engineering aspects of computational systems analysis in physics. In: Sydow, A., Tzafestas, S.G., Vichnevetsky, R. (eds.) Systems Analysis and Simulation 1988, vol. II. Math. Res., Akademie-Verlag Berlin. vol. 47, pp. 375–378 (1988)

    Google Scholar 

  11. Carl, P.: Notes on the climatic response in the aftermath of Gulf War II. Z. Meteorol. 41(6), 476–480 (1991)

    Google Scholar 

  12. Carl, P.: Persistent localized lower troposphere smoke within the planetary monsoon system. Available from the author; submitted to Nature Nov. 21, Ms.-No. C11408 (1991)

    Google Scholar 

  13. Carl, P.: Zur dynamischen Struktur des planetaren Monsuns. Wiss. Z. Humboldt-Univ. Berlin, R. Math. Nat.wiss. 41(2), 29–35 (1992)

    Google Scholar 

  14. Carl, P.: Monsoon dynamics in a low-dimensional GCM. WCRP-84, WMO/TD-No. 619(II), 773–780. WMO, Geneva (1994)

    Google Scholar 

  15. Carl, P.: Summer monsoon, MJO, annual cycle, QBO, Southern Oscillation …On the dynamic architecture of the atmosphere. Preprint volume, 25–26. Second International Scientific Conference on the Global Energy and Water Cycle, Washington. vol.(46) (1996)

    Google Scholar 

  16. Carl, P.: Eine zweite – generisch intrasaisonale – Südliche Oszillation aus dem Atmosphäre–Land–System? Ann. Meteorol. (Offenbach) 37(2), 351–352 (1998)

    Google Scholar 

  17. Carl, P.: On the dynamical status of the climate system – I: A general circulation model en route to chaos. In: Stavrinides, S.G., Banerjee, S., Caglar, H., Ozer, M. (eds.) Chaos and Complex Systems, Proceedings. Springer, Berlin Heidelberg (in print, 2012)

    Google Scholar 

  18. Carl, P.: On the dynamical status of the climate system – II: Synchronous motions galore across the records. In: Stavrinides, S.G., Banerjee, S., Caglar, H., Ozer, M. (eds.) Chaos and Complex Systems, Proceedings. Springer, Berlin Heidelberg (in print, 2012)

    Google Scholar 

  19. Carl, P.: Synchronous motions across the instrumental climate record. In: Banerjee, S., Rondini, L. (eds.) Applications of Nonlinear Dynamics and Chaos in Science and Engineering, vol. 4. Springer, Berlin Heidelberg (scheduled for 2013) (to be submitted)

    Google Scholar 

  20. Carl, P., Stenchikov, G.L.: Structural analysis of the climatic response to a nuclear war. In: Sydow, A., Tzafestas, S.G., Vichnevetsky, R. (eds.) Systems Analysis and Simulation 1988, vol. II. Math. Res., Adademic-Verlag Berlin. vol. 47, pp. 33–36 (1988)

    Google Scholar 

  21. Carl, P., Tschentscher, I.: A nonlinear atmosphere–land–system with intraseasonal to interannual scales. Draft of a paper presented at the First WMO International Workshop on Monsoon Studies (IMW-1). Denpasar, Bali, 24–28 February 1997

    Google Scholar 

  22. Carl, P., Grell, J., Kroschk, S., Perlwitz, J., Tschentscher, I., Worbs, K.D.: Studies on the dynamic structure of a GCM’s boreal summer monsoon. Report No. 1. Climate Dynamics Group, Berlin, Germany (1993)

    Google Scholar 

  23. Carl, P., Worbs, K.D., Tschentscher, I.: On a dynamic systems approach to atmospheric model intercomparison. WCRP-92, WMO/TD-No. 732, pp. 445–450. WMO, Geneva (1995)

    Google Scholar 

  24. Carl, P., Eichler, T., Kroschk, S., Lönhardt, H., Schimmel, E., Tschentscher, I., Worbs, K.D.: Konzeptionelle Studien zur Dynamik des Atmosphäre–Land–Systems. Report No. 7. Climate Dynamics Group, Berlin, Germany (1998)

    Google Scholar 

  25. Carl, P., Svirezhev, Y., Stenchikov, G.: Environmental and biospheric impacts of nuclear war. In: Jørgensen, S.E., Fath, B.D. (eds.) Global Ecology. Encyclopedia of Ecology, vol. 2, pp. 1314–1321. Elsevier, Oxford (2008)

    Chapter  Google Scholar 

  26. Carrera, M.L., Gyakum, J.R.: Southeast Asian pressure surges and significant events of atmospheric mass loss from the northern hemisphere, and a case study analysis. J. Clim. 20(18), 4678–4701(2007)

    Google Scholar 

  27. Chang, P., Wang, B., Li, T., Ji, L.: Interactions between the seasonal cycle and the Southern Oscillation—Frequency entrainment and chaos in a coupled ocean–atmosphere model. Geophys. Res. Lett. 21(25), 2817–2820 (1994)

    Article  ADS  Google Scholar 

  28. Chang, P., Ji, L., Wang, B., Li, T.: Interactions between the seasonal cycle and El Niño–Southern Oscillation in an intermediate coupled ocean–atmosphere model. J. Atmos. Sci. 52(13), 2353–2372 (1995)

    Article  ADS  Google Scholar 

  29. Chang, P., Wang, B., Lau, N-C.G. (eds.): The global monsoon system: Research and forecast. TRMP-70, WMO/TD-No. 1266. WMO, Geneva (2005)

    Google Scholar 

  30. Charney, J.G., DeVore, J.G.: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci. 36(7), 1205–1216 (1979)

    Article  ADS  Google Scholar 

  31. Fleming, E.L., Lim, G.-H., Wallace, J.M.: Differences between spring and autumn circulations in the Northern Hemisphere. J. Atmos. Sci. 44(9), 1266–1286 (1987)

    Article  ADS  Google Scholar 

  32. Gadgil, S.: The Indian monsoon 3. Physics of the monsoon. Resonance 12(5), 4–20 (2007)

    Article  MathSciNet  Google Scholar 

  33. Gadgil, S., Sajani, S.: Monsoon precipitation in AMIP runs. Clim. Dynam. 14(9), 659–689 (1998)

    Article  ADS  Google Scholar 

  34. Gates, W.L.: AMIP: The atmospheric model intercomparison project. Bull. Am. Meteorol. Soc. 73(12), 1962–1970 (1992)

    Article  ADS  Google Scholar 

  35. Gates, W.L., Batten, E.S., Kahle, A.B., Nelson, A.B.: A documentation of the Mintz–Arakawa two-level atmospheric general circulation model. R-877-ARPA. Rand Corporation, Santa Monica (1971)

    Google Scholar 

  36. Gerstengarbe, F.-W. (ed.): 3. Deutsche Klimatagung, Potsdam, 11–14 April 1994, Tagungsband der Vorträge und Poster (Proceedings). PIK Report No. 1. Potsdam Institute for Climate Impact Research, Potsdam, Germany (1994)

    Google Scholar 

  37. Ghan, S.J., Lingaas, J.W., Schlesinger, M.E., Mobley, R.L., Gates, W.L.: A documentation of the OSU two-level atmospheric general circulation model. Report No. 35. Climatic Research Institute, Oregon State University, Corvallis (1982)

    Google Scholar 

  38. Ghil, M.: Climate sensitivity, energy balance models, and oscillatory climate models. J. Geophys. Res. 89(D1), 1280–1284 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  39. Ghil, M.: Dynamics, statistics and predictability of planetary flow regimes. In: Nicolis, C., Nicolis, G. (eds.) Irreversible Phenomena and Dynamical Systems Analysis in Geosciences, pp. 241–283. Reidel, Dordrecht (1987)

    Chapter  Google Scholar 

  40. Ghil, M., Childress, S.: Topics in Geophysical Fluid Dynamics: Atmospheric Dynamics, Dynamo Theory, and Climate Dynamics. Springer, New York (1987)

    Book  MATH  Google Scholar 

  41. Ghil, M., Mo, K.: Intraseasonal oscillations in the global atmosphere. Part I: Northern hemisphere and tropics. J. Atmos. Sci. 48(5), 752–779 (1991)

    Google Scholar 

  42. Ghil, M., Kimoto, M., Neelin, J.D.: Nonlinear dynamics and predictability in the atmospheric sciences. Revs. Geophys. 29(Suppl.), 46–55 (1991)

    Google Scholar 

  43. Goddard, L., Graham, N.E.: Precipitation forecast skill and the hydrological cycle. Preprint volume, 490–491. Second International Scientific Conference on the Global Energy and Water Cycle, Washington (1996)

    Google Scholar 

  44. Goswami, B.N.: South Asian summer monsoon: An overview. In: Chang, C.-P., Wang, B., Lau, N.-C. (eds.) The Global Monsoon System: Research and Forecast (IWM-III). TMRP-70, WMO/TD-No. 1266, pp. 47–71. WMO, Geneva (2004)

    Google Scholar 

  45. Graf, H.-F.: On El Niño/Southern Oscillation and northern hemispheric temperature. Gerlands Beitr. Geophys. 95(1), 63–75 (1986)

    ADS  Google Scholar 

  46. Graf, H.-F., Zanchettin, D.: Central Pacific El Niño, the “subtropical bridge,” and Eurasian climate. J. Geophys. Res. 117, D01102 (2012). doi:10.1029/2011JD016493

    Article  ADS  Google Scholar 

  47. Gutowski, W.J., Iacono, M.J., Liang, X.-Z., Wang, W.-C.: Simulating climate with two different numerical schemes. Tech. Rep. TR049, US Department of Energy (1990)

    Google Scholar 

  48. Held, I.M., Suarez, M.J.: Simple albedo feedback models of the icecaps. Tellus 26(6), 613–628 (1974)

    Article  ADS  Google Scholar 

  49. Hendon, H.H., Sperber, K.R., Waliser, D.E., Wheeler, M.C.: Modeling monsoon intraseasonal variability. Available from http://journals.ametsoc.org/toc/bams/92/9. Bull. Am. Meteorol.Soc., vol. 92, issue 9, p. 4, online only (2011)

  50. Jin, F.-F., Ghil, M.: Intraseasonal oscillations in the extratropics: Hopf bifurcation and topographic instabilities. J. Atmos. Sci. 47(24), 3007–3022 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  51. Jin, F.-F., Neelin, J.D., Ghil, M.: El Niño on the devil’s staircase: Annual subharmonic steps to chaos. Science 264(5155), 70–72 (1994)

    Article  ADS  Google Scholar 

  52. Johnson, D.R.: The forcing and maintenance of global monsoonal circulations: An isentropic analysis. Adv. Geophys. 31, 43–316 (1989)

    Article  ADS  Google Scholar 

  53. Krishnamurti, T.N., Bhalme, H.N.: Oscillations of a monsoon system. Part I. Observational aspects. J. Atmos. Sci. 33(10), 1937–1954 (1976)

    Google Scholar 

  54. Krishnamurti, T.N., Sinha, N.C., Krishnamurti, R., Osterhof, D., Comeaux, J.: Angular momentum, LOD and monsoonal LF mode. J. Meteorol. Soc. Jpn. 70(1), 131–165 (1992)

    Google Scholar 

  55. Lagarias, J.C.: Number theory and dynamical systems. Proc. Symp. Appl. Math. 46, 35–72 (1992)

    Article  MathSciNet  Google Scholar 

  56. Langlois, W.E., Kwok, H.C.W.: Description of the Mintz–Arakawa numerical General Circulation Model. Tech. Rep. No. 3. Department of Meteorology, University of California, Los Angeles (1969)

    Google Scholar 

  57. Lau, K.M., Peng, L.: Origin of low frequency (intraseasonal) oscillations in the tropical atmosphere. Part III: Monsoon dynamics. J. Atmos. Sci. 47(12), 1443–1462 (1990)

    Article  Google Scholar 

  58. Lau, K.M., Yang, G.J., Shen, S.H.: Seasonal and intraseasonal climatology of summer monsoon rainfall over East Asia. Mon. Weather Rev. 116(1), 18–37 (1988)

    Article  ADS  Google Scholar 

  59. Le Roux, D.Y., Pouliot, B.: Analysis of numerically induced oscillations in two-dimensional finite-element shallow water equations. Part II: Free planetary waves. SIAM J. Sci. Comput. 30(4), 1971–1991 (2008)

    Article  Google Scholar 

  60. Lin, Z., Zeng, Q.: Simulation of East Asian summer monsoon by using an improved AGCM. Adv. Atmos. Sci. 14(4), 513–526 (1997)

    Article  MathSciNet  Google Scholar 

  61. Lorenz, E.N.: Simplified dynamic equations applied to the rotating–basin experiments. J. Atmos. Sci. 19(1), 39–51 (1962)

    Article  ADS  Google Scholar 

  62. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130–141 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  63. Lorenz, E.N.: The mechanics of vacillation. J. Atmos. Sci. 20(5), 448–464 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  64. Lorenz, E.N.: Low-order models of atmospheric circulation. J. Meteorol. Soc. Jpn. 60(1), 255–267 (1982)

    Google Scholar 

  65. Lorenz, E.N.: Can chaos and intransitivity lead to interannual variability? Tellus 42A(3), 378–389 (1990)

    ADS  Google Scholar 

  66. Madden, R.A., Julian, P.R.: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci. 28(5), 702–708 (1971)

    Article  ADS  Google Scholar 

  67. Magaña, V., Yanai, M.: Tropical–midlatitude interaction on the time scale of 30 to 60 days during the northern summer of 1979. J. Clim. 4(2), 180–201 (1991)

    Article  ADS  Google Scholar 

  68. Marcus, S.L., Ghil, M., Dickey, J.O., Eubanks, T.M.: Origin of the 30–60 day oscillation in lod and atmospheric angular momentum: New findings from the UCLA General Circulation Model. In: Boucher, C., Wilkins, G.A. (eds.) Earth Rotation and Coordinate Reference Frames, pp. 98–105. Springer, New York (1990)

    Chapter  Google Scholar 

  69. Moiseev, N.N., Aleksandrov, V.V., Tarko, A.M.: Man and Biosphere (in Russian). Nauka, Moscow (1985)

    Google Scholar 

  70. Murakami, T., Chen, L.-X., Xie, A.: Relationship among seasonal cycles, low-frequency oscillations, and transient disturbances as revealed from outgoing longwave radiation data. Mon. Weather Rev. 114(8), 1456–1465 (1986)

    Article  ADS  Google Scholar 

  71. Nakazawa, T.: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteorol. Soc. Jpn. 66, 823–839 (1988)

    Google Scholar 

  72. Normand, C.: Monsoon seasonal forecasting. Quart. J. Roy. Meteorol. Soc. 79(342), 463–473 (1953)

    Article  ADS  Google Scholar 

  73. Randall, D.A. (ed.): General Circulation Model Development. Academic, San Diego (2000)

    Google Scholar 

  74. Reznyanskij, Y.D., Trosnikov, I.V.: Parameterization of the oceanic mixing layer when modelling the zonal atmospheric circulation (in Russian). Trudy Gidrometcent. SSSR 229, 18–31 (1980)

    Google Scholar 

  75. Sellers, W.D.: A climate model based on the energy balance of the earth–atmosphere system. J. Appl. Meteorol. 8(3), 392–400 (1969)

    Article  ADS  Google Scholar 

  76. Stenchikov, G.L., Carl, P.: Climatic consequences of nuclear war: Sensitivity against large–scale inhomogeneities in the initial atmospheric pollutions. GDR Acad. Sci. and Phys. Soc., Berlin (1985)

    Google Scholar 

  77. Suarez, M.J., Schopf, P.S.: A delayed action oscillator for ENSO. J. Atmos. Sci. 45(21), 3283–3287 (1988)

    Article  ADS  Google Scholar 

  78. Tao, S., Chen, L.: A review of recent research on the East Asian summer monsoon in China. In: Chang, C.-P., Krishnamurti, T.N. (eds.) Monsoon Meteorology, pp. 60–92. Oxford University Press, New York (1987)

    Google Scholar 

  79. Tapley, B.D., Bettadpur, S., Watkins, M., Reigbar, C.: The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett. 31, L09607 (2004). doi:10.1029/2004GL019920

    Article  ADS  Google Scholar 

  80. Thompson, S.L., Aleksandrov, V.V., Stenchikov, G.L., Schneider, S.H., Covey, C., Chervin, R.M.: Global climatic consequences of nuclear war: Simulations with three dimensional models. AMBIO 13(4), 236–243 (1984)

    Google Scholar 

  81. Tomita, T., Yasunari, T.: On the two types of ENSO. J. Meteorol. Soc. Jpn. 71(2), 273–284 (1993)

    Google Scholar 

  82. Tschentscher, I., Carl, P.: Climate and climate change dynamics on the attractor sets of a tropospheric GCM. Report No. 6. Climate Dynamics Group, Berlin, Germany (1996)

    Google Scholar 

  83. Tschentscher, I., Carl, P.: Dynamische Selbstorganisation in einem Atmosphäre–Land–System. Ann. Meteorol. 34, 19–20 (1997)

    Google Scholar 

  84. Tschentscher, I., Worbs, K.D., Carl, P.: Frequency drift and retreat variability of a GCM’s monsoon oscillator. WCRP-84, WMO/TD-No. 619(II), pp. 781–788. WMO, Geneva (1994)

    Google Scholar 

  85. Turner, A., Sperber, K.R., Slingo, J.M., Meehl, G.A., Mechoso, C.R., Kimoto, M., Giannini, A: Modelling monsoons: Understanding and predicting current and future behaviour. In: Chang, C.-P., Ding, Y., Lau, N.-C., Johnson, R.H., Wang, B., Yasunari, T. (eds.) The Global Monsoon System: Research and Forecast, 2nd edition (IWM-IV), pp. 421–454. World Scientific, Singapore (2011). LLNL-PROC-407065, Lawrence Livermore National Laboratory (2008)

    Google Scholar 

  86. Tziperman, E., Stone, L., Cane, M.A., Jarosh, H.: El Niño chaos: overlapping of resonances between the seasonal cycle and the Pacific ocean–atmosphere oscillator. Science 264(5155), 72–74 (1994)

    Article  ADS  Google Scholar 

  87. Tziperman, E., Cane, M.A., Zebiak, S.E.: Irregularity and locking to the seasonal cycle in an ENSO prediction model as explained by the quasi-periodicity route to chaos. J. Atmos. Sci. 52(3), 293–306 (1995)

    Article  ADS  Google Scholar 

  88. Valdes, P.: Built for stability. Nat. Geosci. 4(July), 414–416 (2011)

    Article  ADS  Google Scholar 

  89. Wang, B., Ding, Q., Liu, J.: Concept of global monsoon. In: Chang, C.-P., Ding, Y., Lau, N.-C., Johnson, R.H., Wang, B., Yasunari, T. (eds.) The Global Monsoon System: Research and Forecast, 2nd edition (IWM-IV), pp. 3–14. World Scientific, Singapore (2011)

    Chapter  Google Scholar 

  90. Webster, P.J.: The elementary monsoon. In: Fein, J.S., Stephens, P.L. (eds.) Monsoons, pp. 467–522. Wiley, New York (1987)

    Google Scholar 

  91. Webster, P.J., Chou, L.C.: Low-frequency transitions of a simple monsoon system. J. Atmos. Sci. 37(2), 368–382 (1980)

    Article  ADS  Google Scholar 

  92. Webster, P.J., Yang, S.: Monsoon and ENSO: Selectively interactive systems. Quart. J. Roy. Meteorol. Soc. 118(507), 877–926 (1992)

    Article  ADS  Google Scholar 

  93. Webster, P.J., Magaña, V.O., Palmer, T.N., Shukla, J., Tomas, R.A., Yanai, M., Yasunari, T.: Monsoon: Processes, predictability, and the prospects for prediction. J. Geophys. Res. 103(C7), 14451–14510 (1998)

    Article  ADS  Google Scholar 

  94. Werth, S., Güntner A., Schmidt, R., Petrovic, S.: Integration of GRACE mass variations into a global hydrological model. Earth Planet. Sci. Lett. 277, 166–173 (2009). doi:10.1016/j.epsl2008.10.021

    Article  ADS  Google Scholar 

  95. Yasunari, T.: Cloudiness fluctuations associated with the northern hemisphere summer monsoon. J. Meteorol. Soc. Jpn. 57(3), 227–242 (1979)

    Google Scholar 

  96. Yasunari, T.: Structure of an Indian summer monsoon system with around 40-day period. J. Meteorol. Soc. Jpn. 59(3), 336–354 (1981)

    Google Scholar 

  97. Yasunari, T.: Low-frequency interactions between the summer monsoon and the northern hemisphere westerlies. J. Meteorol. Soc. Jpn. 64(5), 693–708 (1986)

    Google Scholar 

  98. Yeh, T.-C., Dao, S.-J., Li, M.-T.: The abrupt change of circulation over the northern hemisphere during June and October. In: Bolin, B. (ed.) The Atmosphere and the Sea in Motion, pp. 249–267. Oxford University Press, New York (1959)

    Google Scholar 

  99. Zhou, T., Wu, B., Scaife, A.A., Brönnimann, S., Cherchi, A., Fereday, D., Fischer, A.M., Folland, C.K., Jin, K.E., Kinter, J., Knight, J.R., Kucharski, F., Kusunoki, S., Lau, N.-C., Li, L., Nath, M.J., Nakaegawa, T., Navarra, A., Pegion, P., Rozanov, E., Schubert, S., Sporyshev, P., Voldoire, A., Wen, X., Yoon, J.H., Zeng, N.: The CLIVAR C20C project: Which components of the Asian–Australian monsoon circulation variations are forced and reproducible? Clim. Dynam. 33(7–8), 1051–1068 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This paper is cordially devoted to the former Climate Dynamics Group, Berlin, with special gratitude to Ina Tschentscher, Klaus Worbs, Judith Perlwitz and Stefan Kroschk. Our report series started with results on the CCAS-B AGCM’s global monsoon and its individual branches in boreal summer [22] as presented at the 1993 EGS General Assembly—shortly after formation of the team, assigned to study the GCM’s behaviour in detail and to further work out the monsoon hypothesis [13]. The first visualization of a GCM’s monsoon dynamics was due to Andreas Hantzschk there (also 1994 at the WCRP monsoon conference). As a ‘wilding’ born in the winds of change in Germany, the group did not survive ‘subcritical’ funding. In a final act for 15 years, selected material was distributed at the 1997 IWM-1 workshop [21]. A post mortem collection of papers [24], including the 1994 update of the monsoon hypothesis, marks the transition to signal analysis aimed to verify conceptual insights as gained from these studies [18, 19].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Carl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Carl, P. (2013). A General Circulation Model en Route to Intraseasonal Monsoon Chaos. In: Banerjee, S., Rondoni, L. (eds) Applications of Chaos and Nonlinear Dynamics in Science and Engineering - Vol. 3. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34017-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34017-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34016-1

  • Online ISBN: 978-3-642-34017-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics