Skip to main content

Spider Venom Components as Drug Candidates

  • Chapter
  • First Online:
Spider Ecophysiology

Abstract

Animal venoms represent a rich resource of bioactive molecules. These complex biofluids contain a multitude of proteins, peptides and small molecules that act with high specificity and potency on numerous physiological processes, such as ion channels and receptors. In this regard, spiders are no exception, and several molecules of biomedical interest have already been identified and characterized in their venoms. Furthermore, analysis of their haemolymph has revealed numerous antimicrobial peptides, the silk they produce is also of interest and insect-selective toxins are developed as insecticides. However, compared with snakes, scorpions and marine organisms, obtaining adequate amounts of spider venom requires a substantial effort. As a consequence, spider venoms have been relatively poorly investigated. Indeed, until now, the main focus has been on large theraphosid spiders and species with life-threatening venom, thus covering only the tip of the iceberg of the huge molecular biodiversity offered by arachnids. Nonetheless, recent technological and strategic developments that enable the discovery of new bioactive ingredients in small amounts of raw material have paved the way to novel discoveries in spider venom. The aim of this chapter is to highlight the interest of spider venom for the pharmaceutical and biotechnology industries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams ME, Carney RL, Enderlin FE, Fu ET, Jarema MA, Li JP, Miller CA, Schooley DA, Shapiro MJ, Venema VJ (1987) Structures and biological activities of three synaptic antagonists from orb weaver spider venom. Biochem Biophys Res Commun 148:678–683

    Article  PubMed  CAS  Google Scholar 

  • Bae C, Sachs F, Gottlieb PA (2011) The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4. Biochemistry 50:6295–6300

    Article  PubMed  CAS  Google Scholar 

  • Berressem P (1999) From bites and stings to medicines. Chem Br 35(4):40–42

    CAS  Google Scholar 

  • Bogin O (2005) Venom peptides and their mimetics as potential drugs. Modulator 19:14–20

    Google Scholar 

  • Bohlen CJ, Kalbacher H, Gründer S (2010) A bivalent tarantula toxin activate the capsaicin receptor, TRPV1, by targeting the outer pore domain. Cell 141:834–845

    Article  PubMed  CAS  Google Scholar 

  • Bulet P, Stöcklin R (2005) Insect antimicrobial peptides: structure, properties and gene regulation. Protein Pept Lett 12:3–11

    Article  PubMed  CAS  Google Scholar 

  • Bulet P, Stöcklin R, Menin L (2004) Antimicrobial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184

    Article  PubMed  CAS  Google Scholar 

  • Castañeda O, Sotolongo V, Amor AM, Stöcklin R, Anderson AJ, Harvey AL, Engström A, Wernstedt C, Karlsson E (1995) Characterization of a potassium channel toxin from the Caribbean sea anemone Stichodactyla helianthus. Toxicon 33:603–613

    Article  PubMed  Google Scholar 

  • Chen X, Kalbacher H, Gründer S (2005) The tarantula toxin Psalmotoxin 1 inhibits acid-sensing ion channel (ASIC) 1a by increasing its apparent H+ affinity. J Gen Physiol 126:71–79

    Article  PubMed  CAS  Google Scholar 

  • Chi V, Pennington MW, Norton RS, Tarcha EJ, Londono LM, Sims-Fahey B, Upadhyay SK, Lakey JT, Iadonato S, Wulff H, Beeton C, Chandy KG (2012) Development of a sea anemone toxin as an immunomodulator for therapy of autoimmune diseases. Toxicon 59:529–546

    Article  PubMed  CAS  Google Scholar 

  • Choi SJ, Parent R, Guillaume C, Deregnaucourt C, Delarbre C, Ojcius DM, Montagne JJ, Célérier ML, Phelipot A, Amiche M, Molgo J, Camadro JM, Guette C (2004) Isolation and characterization of psalmopeotoxin I and II: two novel antimalarial peptides from the venom of the tarantula Psalmopoeus cambridgei. FEBS Lett 572:109–117

    Article  PubMed  CAS  Google Scholar 

  • De Lima ME, Monteiro de Castro Pimenta A, Martin-Eauclaire MF, Zingali RB, Rochat H (eds) (2009) Animal toxins: state of the art, perspectives in health and biotechnology. Editoria ufmg, Brazil

    Google Scholar 

  • Escoubas P, King GF (2009) Venomics as a drug discovery platform. Expert Rev 6:221–224

    Article  CAS  Google Scholar 

  • Favreau P, Menin L, Michalet S, Perret F, Cheneval O, Stöcklin M, Bulet P, Stöcklin R (2006) Mass spectrometry strategies for venom mapping and peptide sequencing from crude venoms: case applications with single arthropod specimen. Toxicon 47:676–687

    Article  PubMed  CAS  Google Scholar 

  • Favreau P, Stöcklin R (2009) Marine snail venoms: use and trends in receptor and channel neuropharmacology. Curr Opin Pharmacol 9:594–601

    Article  PubMed  CAS  Google Scholar 

  • Favreau P, Neveu E, Maver M, Stöcklin R, Bertrand D (2010) New tools to discover active molecules in venoms: from theory to practice. In: Barbier J, Benoit E, Marchot P, Mattéi C, Servent D (eds) Advances and new technologies in toxinology, SFET edn. Gif sur Yvette, France. http://www.sfet.asso.fr

  • Favreau P, Benoit E, Hocking HG, Carlier L, D’ Hoedt D, Leipold E, Markgraf R, Schlumberger S, Córdova MA, Gaertner H, Paolini-Bertrand M, Hartley O, Tytgat J, Heinemann SH, Bertrand D, Boelens R, Stöcklin R, Molgó J (2012) A novel μ-conopeptide, CnIIIC, exerts potent and preferential inhibition of Na(V) 1.2/1.4 channels and blocks neuronal nicotinic acetylcholine receptors. Br J Pharmacol 166:1654–1668

    Article  PubMed  CAS  Google Scholar 

  • Fox JW, Serrano SM (2007) Approaching the golden age of natural product pharmaceuticals from venom libraries: an overview of toxins and toxin-derivatives currently involved in therapeutic or diagnostic applications. Curr Pharm Des 13:2927–2934

    Article  PubMed  CAS  Google Scholar 

  • Gao L, Zhang J, Feng W, Bao N, Song D, Zhu BC (2005) Pharmacological characterisation of spider antimicrobial peptides. Protein Pept Lett 12:507–511

    Article  PubMed  CAS  Google Scholar 

  • Gottlieb PA, Suchyna TM, Sachs F (2004) Mechanosensitive ion channels as drug targets. Curr Drug Targets CNS Neurol Disord 3:287–295

    Article  PubMed  CAS  Google Scholar 

  • Grishin EV, Savchenko GA, Vassilevski AA, Korolkova YV, Boychuk YA, Viatchenko-Karpinski VY, Nadezhdin KD, Arseniev AS, Pluzhnikov KA, Kulyk VB, Voitenko NV, Krishtal OO (2010) Novel peptide from spider venom inhibits P2X3 receptors and inflammatory pain. Ann Neurol 67:680–683

    PubMed  CAS  Google Scholar 

  • Guth SL, Scapini DA, Drescher MJ, Drescher DG (1990) Argiotoxin-636 blocks effects of N-methyl-d-aspartate on lateral line of Xenopus laevis at concentrations which do not alter spontaneous or evoked neural activity. Life Sci 47:1437–1445

    Article  PubMed  CAS  Google Scholar 

  • Harvey AL, Stöcklin R (2012) From venoms to drugs: introduction. Toxicon 59:433

    Article  CAS  Google Scholar 

  • Herzig V, Wood DL, Newell F, Chaumeil PA, Kaas Q, Binford GJ, Nicholson GM, Gorse D, King GF (2011) ArachnoServer 2.0, an updated online resource for spider toxin sequences and structures. Nucleic Acids Res 39(Database issue):D653–D657, Accessed 20 June 2012

    Article  PubMed  Google Scholar 

  • Jiang L, Zhang D, Zhang Y, Peng L, Chen J, Liang S (2010) Venomics of the spider Ornithoctonus huwena based on transcriptomic versus proteomic analysis. Comp Biochem Physiol 5:81–88

    Google Scholar 

  • Jungo F, Bougueleret L, Xenarios I, Poux S (2012) The UniProtKB/Swiss-Prot Tox-Prot program: a central hub of integrated venom protein data. Toxicon 60:551–557, Accessed 20 June 2012

    Article  PubMed  CAS  Google Scholar 

  • Kazic T, Gojkovic-Bukarica L (1999) Ion channels and drug development, focus on potassium channels and their modulators. Facta Universitatis, Med Biol 6:23–30

    Google Scholar 

  • King GF (2011) Venom as a platform for human drugs: translating toxins into therapeutics. Expert Opin Biol Ther 11:1469–1484

    Article  PubMed  CAS  Google Scholar 

  • Koua D, Brauer A, Laht S, Kaplinski L, Favreau P, Remm M, Lisacek F, Stöcklin R (2012) ConoDictor: a tool for prediction of conopeptide superfamilies. Nucleic Acids Res 40(W1):W238–W241

    Article  PubMed  Google Scholar 

  • Kuhn-Nentwig L, Nentwig W (2013) Main components of spider venoms. In: Nentwig W (ed) Spider ecophysiology. Springer, Heidelberg (this volume)

    Google Scholar 

  • Kuhn-Nentwig L, Stöcklin R, Nentwig W (2011) Venom composition and strategies in spiders: is everything possible? Adv In Insect Phys 40:1–86

    Article  Google Scholar 

  • Lang J, Ushkaryov Y, Grasso A, Wollheim CB (1998) Ca2+-independent insulin exocytosis induced by α-latrotoxin requires latrophilin, a G protein-coupled receptor. EMBO J 17: 648–657

    Article  PubMed  CAS  Google Scholar 

  • Lewis RJ, Garcia ML (2003) Therapeutic potential of venom peptides. Nat Rev 2:790–802

    Article  CAS  Google Scholar 

  • Liang S (2004) An overview of peptide toxins from the venom of the Chinese bird spider Selenocosmia huwena Wang [=Ornithoctonus huwena (Wang)]. Toxicon 43:575–585

    Article  PubMed  CAS  Google Scholar 

  • Ménez A, Stöcklin R, Mebs D (2006) ‘Venomics’ or: the venomous systems genome project. Toxicon 47:255–259

    Article  PubMed  Google Scholar 

  • Middleton RE, Warren VA, Kraus RL, Hwang JC, Liu CJ, Dai G, Brochu RM, Kohler MG, Gao YD, Garsky VM, Bogusky MJ, Mehl JT, Cohen CJ, Smith MM (2002) Two tarantula peptides inhibit activation of multiple sodium channels. Biochemistry 41:14734–14747

    Article  PubMed  CAS  Google Scholar 

  • Moe ST, Smith DL, Chien Y, Raszkiewicz JL, Artman LD, Mueller AL (1998) Design, synthesis, and biological evaluation of spider toxin (argiotoxin-636) analogs as NMDA receptor antagonists. Pharm Res 15(1):31–38

    Article  PubMed  CAS  Google Scholar 

  • Mueller AL, Albensi BC, Ganong AH, Reynolds LS, Jackson H (1991) Arylamine spider toxins antagonize NMDA receptor-mediated synaptic transmission in rat hippocampal slices. Synapse 9:244–250

    Article  PubMed  CAS  Google Scholar 

  • Nunes KP, Costa-Gonçalves A, Lanza LF, Cortes SF, Cordeiro MN, Richardson M, Pimenta AMC, Webb RC, Leite R, De Lima ME (2008) Tx2-6 toxin of the Phoneutria nigriventer spider potentiates rat erectile function. Toxicon 51:1197–1206

    Article  PubMed  CAS  Google Scholar 

  • Park SP, Kim BM, Koo JY, Cho H, Lee CH, Kim M, Na HS, Oh U (2008) A tarantula spider toxin, GsMTx4, reduces mechanical and neuropathic pain. Pain 137:208–217

    Article  PubMed  CAS  Google Scholar 

  • Platnick NI (2012) The world spider catalog. Version 12.5. http://research.amnh.org/iz/spiders/catalog/. Accessed 20 June 2012

  • Poirot O, Berta T, Decosterd I, Kellenberger S (2006) Distinct ASIC currents are expressed in rat putative nociceptors and are modulated by nerve injury. J Physiol 576:215–234

    Article  PubMed  CAS  Google Scholar 

  • Saez NJ, Senff S, Jensen JE, Er SY, Herzig V, Rash LD, King GF (2010) Spider-venom peptides as therapeutics. Toxins 2:2851–2871

    Article  PubMed  CAS  Google Scholar 

  • Sanguinetti M, Johnson J, Hammerland L, Kelbaugh P, Volkmann R, Saccomano N, Mueller A (1997) Heteropodatoxins: peptides isolated from spider venom that block Kv4.2 potassium channels. Mol Pharmacol 51:491–498

    PubMed  CAS  Google Scholar 

  • Savchenko HA, Vassilevski AA, Pluzhnykov KA, Korolkova YV, Mamenko MV, Volkova TM, Maksymiuk OP, Boychuk YA, Grishin EV, Kryshtal OO (2009) Peptide components of Geolycosa spider venom modulate P2X receptor activity of rat sensory neurons. Fiziol Zh 55(2):11–16

    PubMed  CAS  Google Scholar 

  • Silva JP, Suckling J, Ushkaryov Y (2009) Penelope’s web: using α-latrotoxin to untangle the mysteries of exocytosis. J Neurochem 111:275–290

    Article  PubMed  CAS  Google Scholar 

  • Silva JP, Ushkaryov YA (2010) The latrophilins, “split-personality” receptors. Adv Exp Med Biol 706:59–75

    Article  PubMed  CAS  Google Scholar 

  • Stöcklin R, Cretton G (1998) VENOMS—the ultimate database on venomous animals. Professional edition, Version 1.0, CD-ROM 1 & 2, Atheris Laboratories, Geneva, Switzerland

    Google Scholar 

  • Stöcklin R, Favreau P (2002) Proteomics of venom peptides. In: Ménez A (ed) Perspectives in molecular toxinology. Wiley, Chichester

    Google Scholar 

  • Stöcklin R, Vorherr T (2011) Future perspectives of venoms for drug discovery. PharManufacturing: The International Peptide Review 22–25

    Google Scholar 

  • Ushkaryov Y, Rohou A, Sugita S (2008) α-Latrotoxin and its receptors. Handb Exp Pharmacol 184:171–206

    Article  PubMed  CAS  Google Scholar 

  • Vetter I, Davis JL, Rash LD, Raveendra A, Mobli M, Alewood PF, Lewis RJ, King GF (2011) Venomics: a new paradigm for natural product-based drug discovery. Amino Acid 40:15–28

    Article  CAS  Google Scholar 

  • Violette A, Biass D, Dutertre S, Koua D, Piquemal D, Pierrat F, Stöcklin R, Favreau P (2012) Large-scale discovery of conopeptides and conoproteins in the injectable venom of a fish-hunting cone snail using a combined proteomic and transcriptomic approach. J Proteomics 75(17):5215–5225

    Article  PubMed  CAS  Google Scholar 

  • Zarychanski R, Schulz VP, Houston BL, Maksimova Y, Houston DS, Smith B, Rinehart J, Gallagher PG (2012) Mutations in the mechanotransduction protein PIEZO1 are associated with hereditary xerocytosis. Blood 120(9):1908–1915

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Swiss Commission for Technology and Innovation (CTI) and to the Swiss Initiative in Systems Biology (SystemsX.ch) for financial support. Part of the tools and strategies presented herein were developed and validated in the frame of CONCO, the cone snail genome project for health (www.conco.eu) within the 6th Framework Program (LIFESCIHEALTH-6 Integrated Project LSHB-CT-2007, contract number 037592), with Dr. Torbjörn Ingemansson as scientific officer. We would like to express our deepest gratitude to Xavier Sprungli (The Toxinomics Foundation) for his ongoing help and creativity; he prepared the figures of this article. We are grateful to Nicolas Hulo (Atheris Laboratories), Roman Mylonas (Atheris Laboratories and Swiss Institute of Bioinformatics), Frédérique Lisacek (Swiss Institute of Bioinformatics), Lucia Kuhn-Nentwig and Wolfgang Nentwig (University of Bern) for fruitful collaborations and ongoing help. We would like to thank Ron Hogg of OmniScience SA for editorial support. This article is a tribute to our friend Vincent Deryck who left us after a long and courageous fight against cancer. Vincent was instrumental in the development of venom production at Alphabiotoxine in Belgium, and he will be missed a lot.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reto Stöcklin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Oldrati, V., Bianchi, E., Stöcklin, R. (2013). Spider Venom Components as Drug Candidates. In: Nentwig, W. (eds) Spider Ecophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33989-9_37

Download citation

Publish with us

Policies and ethics