Skip to main content

Adhesion to Flat Surfaces: From Spiders to Stickers

  • Chapter
  • First Online:
Book cover Spider Ecophysiology

Abstract

Tarsal morphology of spiders differs from species to species, reflecting adaptations to habitat demands. Jumping spiders (Salticidae) rely on the hierarchically structured claw tuft (scopula) to firmly attach to smooth surfaces. This scopula consists of single hairs (setae) covered by numerous cuticular processes (setules). These setules are the direct contacting elements of the attachment system. Adhesion does not depend on secreted fluids but employs short-ranging van der Waals forces. The estimated 624,000 setules in the spider Evarcha arcuata allow for a theoretical safety factor of 160 times the spider´s average weight. Strong adhesion is balanced by easy detachment through an asymmetric design of the setules’ distal ends. Detachment is controlled in an integrated manner via leg kinematics. The combination of dry adhesion, functional also in vacuum, substrate compliant hierarchical structure, and switchable adhesive properties, perfectly qualifies for biomimetic transfer. To be able to transfer the adhesive performance like the one of the salticid spider E. arcuata to a technical design, it is necessary to analyze the individual contributions of adhesion, compliance, and detachment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arzt E, Gorb E, Spolenak R (2003) From micro to nano contacts in biological attachment devices. Proc Natl Acad Sci 100:10603–10606

    Article  PubMed  CAS  Google Scholar 

  • Autumn K, Peattie AM (2002) Mechanisms of adhesion in geckos. Integr Comp Biol 42: 1081–1090

    Article  PubMed  Google Scholar 

  • Betz O, Kölsch G (2004) The role of adhesion in prey capture and predator defence in arthropods. Arthrop Struct Develop 33:3–30

    Article  Google Scholar 

  • Bhushan B, Peressadko TW, Kim AG (2006) Adhesion analysis of two-level hierarchical morphology in natural attachment systems for “smart adhesion”. J Adhes Sci Technol 20: 1475–1491

    Article  CAS  Google Scholar 

  • Gao H, Wang X, Yao H, Gorb S, Arzt E (2005) Mechanics of hierarchical adhesion structures of geckos. Mech Mater 37:275–285

    Article  Google Scholar 

  • Gasparetto A, Vidoni R, Seidl T (2008) Kinematic study of the spider system in a biomimetic perspective. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems, Nice, France

    Google Scholar 

  • Gasparetto A, Seidl T, Vidoni R (2009) A mechanical model for the adhesion of spiders to nominally flat surfaces. J Bionic Eng 6:135–142

    Article  Google Scholar 

  • Gasparetto A, Vidoni R, Seidl T (2010) Passive control of attachment in legged space robots. Appl Bionics Biomech 7:69–81

    Article  Google Scholar 

  • Hansen WR, Autumn K (2005) Evidence for self-cleaning in gecko setae. Proc Natl Acad Sci 102: 385–389

    Article  PubMed  CAS  Google Scholar 

  • Hill DE (1977) The pretarsus of salticid spiders. Zool J Linn Soc 60:319–338

    Article  Google Scholar 

  • Johnson KL, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proc R Soc London A 324:301–313

    Article  CAS  Google Scholar 

  • Kesel AB, Martin A, Seidl T (2003) Adhesion measurements on the attachment devices of the jumping spider Evarcha arcuata. J Exp Biol 206:2733–2738. doi:10.1242/jeb.00478

    Article  PubMed  CAS  Google Scholar 

  • Kesel AB, Martin A, Seidl T (2004) Getting a grip on spider attachment: an AFM approach to microstructure adhesion in arthropods. Smart Mater Struct 13:512–518. doi:10.1088/0964-1726/13/3/009

    Article  Google Scholar 

  • Li Y, Ahmed A, Sameoto D, Menon C (2012) Abigaille II: toward the development of a spider-inspired climbing robot. Robotica 30:79–89

    Article  CAS  Google Scholar 

  • Martin A, Dillinger SCG, Kesel AB, Nachtigall W (2002a) The structure of tarsal attachment elements in Araneae. Zoology 105(35 Suppl):95

    Google Scholar 

  • Martin A, Seidl T, Kesel AB (2002b) Das mikro-mechanische Haftsystem der Spinne Evarcha arcuata. In: Wisser A, Nachtigall W (eds) Biona-Report 16:226–230

    Google Scholar 

  • Menon C, Li Y, Sameoto D, Martens C (2008) Abigaille-I: towards the development of a spider-inspired climbing robot for space use. In: IEEE RAS/EMBS international conference on biomedical robotics and biomechatronics, Scottsdale

    Google Scholar 

  • Niederegger (2013) Functional aspects of spider scopulae. In: Nentwig W (ed) Spider ecophysiology. Springer, Berlin (this volume)

    Google Scholar 

  • Rovner JS (1978) Adhesive hairs in spiders: behavioral functions and hydraulically mediated movement. Symp Zool Soc Lond 42:99–108

    Google Scholar 

  • Sameoto D, Menon C (2010) Recent advances in the fabrication and adhesion testing of biomimetic dry adhesives. Smart Mater Struct 19:103001

    Article  Google Scholar 

  • Sitti M, Fearing RS (2003) Synthetic gecko foot-hair for micro/nano structures as dry adhesives. J Adhes Sci Technol 18:1055–1074

    Article  Google Scholar 

  • Vidoni R, Gasparetto A (2011) Efficient force distribution and leg posture for a bio-inspired spider robot. Rob Auton Syst 59:142–150

    Article  Google Scholar 

  • Zhang H, Guo DJ, Dai ZD (2010) Progress on gecko-inspired micro/nano-adhesion arrays. Chin Sci Bull – Bionic Eng 55:1843–1850. doi:10.1007/s11434-010-3065-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Seidl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Seidl, T., Vidoni, R. (2013). Adhesion to Flat Surfaces: From Spiders to Stickers. In: Nentwig, W. (eds) Spider Ecophysiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33989-9_35

Download citation

Publish with us

Policies and ethics