Skip to main content

Part of the book series: Cognitive Technologies ((COGTECH))

  • 618 Accesses

Abstract

Chapter 1 introduces the necessary background. It defines valued constraint satisfaction problems and gives examples of problems that can be formulated as such. Secondly, it defines the key concept of expressibility and introduces certain algebraic properties that play a key role in the complexity analysis of valued constraint satisfaction problems. Finally, it presents the notion of submodularity and surveys known results regarding optimising submodular functions.

The highest technique is to have no technique.

Bruce Lee

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A valuation structure, Ω, is a totally-ordered set, with a minimum and a maximum element (denoted by 0 and by ∞), together with a commutative, associative binary aggregation operator, ⊕, such that for all α,β,γΩ, α⊕0=α and αγβγ whenever αβ.

  2. 2.

    The main difference between semi-ring CSPs and valued CSPs is that costs in valued CSPs represent violation levels and have to be totally ordered, whereas costs in semi-ring CSPs represent preferences and may be ordered only partially.

  3. 3.

    This is true for optimal solutions. However, if we are interested in approximability results, this statement is not true even over Boolean domains; see [87].

  4. 4.

    The power of the local consistency technique has also been fully characterised for uniform CSPs [4].

  5. 5.

    Polymorphisms of valued constraint languages are also known as feasibility polymorphisms [65].

  6. 6.

    For a k-ary fractional operation, all weights r i are divided by k.

  7. 7.

    Think of 2V as {0,1}-vectors of length |V|.

  8. 8.

    Let \(\mathcal{B}\) be an algorithm for the minimisation problem of f in the oracle value model. \(\mathcal{B}\) is called polynomial if it runs in polynomial time. A polynomial algorithm \(\mathcal{B}\) is called strongly polynomial if the running time does not depend on M=maxf. In other words, the number of elementary arithmetic operations and other operations is bounded by a polynomial in the size of the input. A polynomial algorithm \(\mathcal{B}\) which does depend on M is called weakly polynomial. A polynomial algorithm \(\mathcal{B}\) is called combinatorial if it does not employ the ellipsoid method. Finally, a combinatorial algorithm \(\mathcal{B}\) is called fully combinatorial if it uses only oracle calls, additions, subtractions, and comparisons, but not multiplications and divisions, as fundamental operations.

  9. 9.

    The class of cost functions closed under a tournament pair multimorphism is more general than the class of submodular cost functions if the range of the cost functions includes infinite costs [66].

References

  1. Adler, I., Gottlob, G., Grohe, M.: Hypertree width and related hypergraph invariants. Eur. J. Comb. 28(8), 2167–2181 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Atserias, A., Bulatov, A.A., Dalmau, V.: On the power of k-consistency. In: Proceedings of the 34th International Colloquium on Automata, Languages and Programming (ICALP’07). Lecture Notes in Computer Science, vol. 4596, pp. 279–290. Springer, Berlin (2007)

    Google Scholar 

  3. Atserias, A., Weyer, M.: Decidable relationships between consistency notions for constraint satisfaction problems. In: Proceedings of the 18th Annual Conference of the European Association for Computer Science Logic (CSL’09). Lecture Notes in Computer Science, vol. 5771, pp. 102–116. Springer, Berlin (2009)

    Google Scholar 

  4. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, Berlin (1999)

    MATH  Google Scholar 

  5. Bang-Jensen, J., Hell, P., MacGillivray, G.: The complexity of colouring by semicomplete digraphs. SIAM J. Discrete Math. 1(3), 281–298 (1988)

    MathSciNet  MATH  Google Scholar 

  6. Barto, L.: The dichotomy for conservative constraint satisfaction problems revisited. In: Proceedings of the 26th IEEE Symposium on Logic in Computer Science (LICS’11), pp. 301–310. IEEE Computer Society, Los Alamitos (2011)

    Google Scholar 

  7. Barto, L., Kozik, M.: Constraint satisfaction problems of bounded width. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS’09), pp. 461–471. IEEE Computer Society, Los Alamitos (2009)

    Google Scholar 

  8. Barto, L., Kozik, M.: Robust satisfiability of constraint satisfaction problems. In: Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC’12), pp. 931–940. ACM, New York (2012)

    Google Scholar 

  9. Barto, L., Kozik, M., Maróti, M., Niven, T.: CSP dichotomy for special triads. Proc. Am. Math. Soc. 137(9), 2921–2934 (2009)

    MATH  Google Scholar 

  10. Barto, L., Kozik, M., Niven, T.: The CSP dichotomy holds for digraphs with no sources and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell). SIAM J. Sci. Comput. 38(5), 1782–1802 (2009)

    MathSciNet  MATH  Google Scholar 

  11. van Beek, P., Dechter, R.: On the minimality and decomposability of row-convex constraint networks. J. ACM 42(3), 543–561 (1995)

    MATH  Google Scholar 

  12. Berman, J., Idziak, P., Marković, P., McKenzie, R., Valeriote, M., Willard, R.: Varieties with few subalgebras of powers. Trans. Am. Math. Soc. 362(3), 1445–1473 (2010)

    MATH  Google Scholar 

  13. Bertelé, U., Brioshi, F.: Nonserial Dynamic Programming. Academic Press, San Diego (1972)

    MATH  Google Scholar 

  14. Bistarelli, S., Montanari, U., Rossi, F., Schiex, T., Verfaillie, G., Fargier, H.: Semiring-based CSPs and valued CSPs: frameworks, properties, and comparison. Constraints 4(3), 199–240 (1999)

    MathSciNet  MATH  Google Scholar 

  15. Bodirsky, M.: Constraint satisfaction problems with infinite templates. In: Complexity of Constraints. Lecture Notes in Computer Science, vol. 5250, pp. 196–228. Springer, Berlin (2008)

    Google Scholar 

  16. Bodirsky, M., Chen, H.: Quantified equality constraints. In: Proceedings of the 22nd IEEE Symposium on Logic in Computer Science (LICS’07), pp. 203–212 (2007)

    Google Scholar 

  17. Bodirsky, M., Chen, H.: Relatively quantified constraint satisfaction. Constraints 14(1), 3–15 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Bodirsky, M., Kára, J.: The complexity of equality constraint languages. Theory Comput. Syst. 43(2), 136–158 (2008)

    MathSciNet  MATH  Google Scholar 

  19. Bodirsky, M., Kára, J.: The complexity of temporal constraint satisfaction problems. Journal of the ACM 57(2) (2010)

    Google Scholar 

  20. Bodnarčuk, V., Kalužnin, L., Kotov, V., Romov, B.: Galois theory for Post algebras. I. Cybern. Syst. Anal. 5(3), 243–252 (1969)

    Google Scholar 

  21. Börner, F., Bulatov, A., Jeavons, P., Krokhin, A.: Quantified constraints: algorithms and complexity. In: Proceedings of Computer Science Logic, the 17th Inernational Workshop (CSL’03), the 12th Annual Conference of the EACSL, and the 8th Kurt Gödel Colloquium. Lecture Notes in Computer Science, vol. 2803, pp. 58–70. Springer, Berlin (2003)

    Google Scholar 

  22. Boros, E., Hammer, P.L.: Pseudo-Boolean optimization. Discrete Appl. Math. 123(1–3), 155–225 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Bulatov, A.: A dichotomy theorem for constraint satisfaction problems on a 3-element set. J. ACM 53(1), 66–120 (2006)

    MathSciNet  Google Scholar 

  24. Bulatov, A., Dalmau, V.: A simple algorithm for Mal’tsev constraints. SIAM J. Sci. Comput. 36(1), 16–27 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Bulatov, A., Krokhin, A., Jeavons, P.: Classifying the complexity of constraints using finite algebras. SIAM J. Sci. Comput. 34(3), 720–742 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Bulatov, A.A.: H-Coloring dichotomy revisited. Theor. Comput. Sci. 349(1), 31–39 (2005)

    MathSciNet  MATH  Google Scholar 

  27. Bulatov, A.A.: The complexity of the counting constraint satisfaction problem. In: Proceedings of the 35th International Colloquium on Automata, Languages and Programming (ICALP’08). Lecture Notes in Computer Science, vol. 5126, pp. 646–661. Springer, Berlin (2008)

    Google Scholar 

  28. Bulatov, A.A.: Complexity of conservative constraint satisfaction problems. ACM Trans. Comput. Log. 12(4), 24 (2011)

    MathSciNet  Google Scholar 

  29. Bulatov, A.A.: On the CSP dichotomy conjecture. In: Proceedings of the 6th International Computer Science Symposium in Russia (CSR’11). Lecture Notes in Computer Science, vol. 6651, pp. 331–344. Springer, Berlin (2011). Invited paper

    Google Scholar 

  30. Bulatov, A.A., Krokhin, A., Larose, B.: Dualities for constraint satisfaction problems. In: Complexity of Constraints. Lecture Notes in Computer Science, vol. 5250, pp. 93–124. Springer, Berlin (2008)

    Google Scholar 

  31. Cai, J.Y., Chen, X.: Complexity of counting CSP with complex weights. In: Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC’12), pp. 909–920. ACM, New York (2012)

    Google Scholar 

  32. Chen, H.: The computational complexity of quantified constraint satisfaction. Ph.D. thesis, Cornell University (2004)

    Google Scholar 

  33. Chen, H.: A rendezvous of logic, complexity, and algebra. SIGACT News 37(4), 85–114 (2006)

    Google Scholar 

  34. Chen, H.: The complexity of quantified constraint satisfaction: collapsibility, sink algebras, and the three-element case. SIAM J. Comput. 37(5), 1674–1701 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Chen, H., Dalmau, V.: Beyond hypertree width: decomposition methods without decompositions. In: Proceedings of the 11th International Conference on Principles and Practice of Constraint Programming (CP’05). Lecture Notes in Computer Science, vol. 3709, pp. 167–181. Springer, Berlin (2005)

    Google Scholar 

  36. Cohen, D., Cooper, M., Jeavons, P., Krokhin, A.: Supermodular functions and the complexity of MAX-CSP. Discrete Appl. Math. 149(1–3), 53–72 (2005)

    MathSciNet  MATH  Google Scholar 

  37. Cohen, D., Jeavons, P.: The complexity of constraint languages. In: Rossi, F., van Beek, P., Walsh, T. (eds.) The Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

    Google Scholar 

  38. Cohen, D., Jeavons, P., Gyssens, M.: A unified theory of structural tractability for constraint satisfaction problems. J. Comput. Syst. Sci. 74(5), 721–743 (2008)

    MathSciNet  MATH  Google Scholar 

  39. Cohen, D.A.: A new class of binary CSPs for which arc-consistency is a decision procedure. In: Proceedings of the 9th International Conference on Principles and Practice of Constraint Programming (CP’03). Lecture Notes in Computer Science, vol. 2833, pp. 807–811. Springer, Berlin (2003)

    Google Scholar 

  40. Cohen, D.A., Cooper, M.C., Green, M., Marx, D.: On guaranteeing polynomially-bounded search tree size. In: Proceedings of the 17th International Conference on Principles and Practice of Constraint Programming (CP’11). Lecture Notes in Computer Science, vol. 6876, pp. 160–171. Springer, Berlin (2011)

    Google Scholar 

  41. Cohen, D.A., Cooper, M.C., Jeavons, P.G.: An algebraic characterisation of complexity for valued constraints. In: Proceedings of the 12th International Conference on Principles and Practice of Constraint Programming (CP’06). Lecture Notes in Computer Science, vol. 4204, pp. 107–121. Springer, Berlin (2006)

    Google Scholar 

  42. Cohen, D.A., Cooper, M.C., Jeavons, P.G.: Generalising submodularity and Horn clauses: tractable optimization problems defined by tournament pair multimorphisms. Theor. Comput. Sci. 401(1–3), 36–51 (2008)

    MathSciNet  MATH  Google Scholar 

  43. Cohen, D.A., Cooper, M.C., Jeavons, P.G., Krokhin, A.A.: The complexity of soft constraint satisfaction. Artif. Intell. 170(11), 983–1016 (2006)

    MathSciNet  MATH  Google Scholar 

  44. Cooper, M.C.: High-order consistency in valued constraint satisfaction. Constraints 10(3), 283–305 (2005)

    MathSciNet  MATH  Google Scholar 

  45. Cooper, M.C.: Line Drawing Interpretation. Springer, Berlin (2008)

    MATH  Google Scholar 

  46. Cooper, M.C.: Minimization of locally defined submodular functions by optimal soft arc consistency. Constraints 13(4), 437–458 (2008)

    MathSciNet  MATH  Google Scholar 

  47. Cooper, M.C., Escamocher, G.: A dichotomy for 2-constraint forbidden CSP patterns. In: Proceedings of AAAI’12. AAAI Press, Menlo Park (2012)

    Google Scholar 

  48. Cooper, M.C., Jeavons, P.G., Salamon, A.Z.: Generalizing constraint satisfaction on trees: hybrid tractability and variable elimination. Artif. Intell. 174(9–10), 570–584 (2010)

    MathSciNet  MATH  Google Scholar 

  49. Crama, Y., Hammer, P.L.: Boolean Functions—Theory, Algorithms, and Applications. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  50. Creignou, N., Khanna, S., Sudan, M.: Complexity Classification of Boolean Constraint Satisfaction Problems. SIAM Monographs on Discrete Mathematics and Applications, vol. 7. SIAM, Philadelphia (2001)

    Google Scholar 

  51. Creignou, N., Kolaitis, P.G., Vollmer, H. (eds.): Complexity of Constraints: An Overview of Current Research Themes. Lecture Notes in Computer Science, vol. 5250. Springer, Berlin (2008)

    MATH  Google Scholar 

  52. Creignou, N., Kolaitis, P.G., Zanuttini, B.: Structure identification of Boolean relations and plain bases for co-clones. J. Comput. Syst. Sci. 74(7), 1103–1115 (2008)

    MathSciNet  MATH  Google Scholar 

  53. Cunningham, W.H.: Testing membership in matroid polyhedra. J. Comb. Theory, Ser. B 36(2), 161–188 (1984)

    MathSciNet  MATH  Google Scholar 

  54. Cunningham, W.H.: On submodular function minimization. Combinatorica 5(3), 185–192 (1985)

    MathSciNet  MATH  Google Scholar 

  55. Dalmau, V.: Generalized majority-minority operations are tractable. Log. Methods Comput. Sci. 2(4) (2006)

    Google Scholar 

  56. Dalmau, V., Kolaitis, P.G., Vardi, M.Y.: Constraint satisfaction, bounded treewidth, and finite-variable logics. In: Proceedings of the 8th International Conference on Principles and Practice of Constraint Programming (CP’02). Lecture Notes in Computer Science, vol. 2470, pp. 310–326. Springer, Berlin (2002)

    Google Scholar 

  57. Dalmau, V., Pearson, J.: Set functions and width 1 problems. In: Proceedings of the 5th International Conference on Constraint Programming (CP’99). Lecture Notes in Computer Science, vol. 1713, pp. 159–173. Springer, Berlin (1999)

    Google Scholar 

  58. Dechter, R.: From local to global consistency. Artif. Intell. 55(1), 87–107 (1992)

    MathSciNet  MATH  Google Scholar 

  59. Dechter, R.: Constraint Processing. Morgan Kaufmann, San Mateo (2003)

    Google Scholar 

  60. Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artif. Intell. 38(3), 353–366 (1989)

    MathSciNet  MATH  Google Scholar 

  61. Dechter, R., Pearl, J.: Structure identification in relational data. Artif. Intell. 58(1–3), 237–270 (1992)

    MathSciNet  MATH  Google Scholar 

  62. Deineko, V., Jonsson, P., Klasson, M., Krokhin, A.: The approximability of Max CSP with fixed-value constraints. J. ACM 55(4) (2008)

    Google Scholar 

  63. Denecke, K., Wismath, S.L.: Universal Algebra and Applications in Theoretical Computer Science. Chapman and Hall/CRC Press, London/Boca Raton (2002)

    MATH  Google Scholar 

  64. Dyer, M.E., Richerby, D.: On the complexity of #CSP. In: Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC’10), pp. 725–734. ACM, New York (2010)

    Google Scholar 

  65. Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Combinatorial Structures and Their Applications, pp. 69–87 (1970)

    Google Scholar 

  66. Färnqvist, T., Jonsson, P.: Bounded tree-width and CSP-related problems. In: Proceedings of the 18th International Symposium on Algorithms and Computation (ISAAC’07). Lecture Notes in Computer Science, vol. 4835, pp. 632–643. Springer, Berlin (2007)

    Google Scholar 

  67. Feder, T., Hell, P., Huang, J.: Bi-arc graphs and the complexity of list homomorphisms. J. Graph Theory 42(1), 61–80 (2003)

    MathSciNet  MATH  Google Scholar 

  68. Feder, T., Kolaitis, P.: Closures and dichotomies for quantified constraints. Tech. rep. TR06-160, Electronic Colloquium on Computational Complexity (ECCC) (2006)

    Google Scholar 

  69. Feder, T., Vardi, M.Y.: The computational structure of monotone monadic SNP and constraint satisfaction: a study through datalog and group theory. SIAM J. Sci. Comput. 28(1), 57–104 (1998)

    MathSciNet  MATH  Google Scholar 

  70. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998)

    MathSciNet  MATH  Google Scholar 

  71. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

    MathSciNet  MATH  Google Scholar 

  72. Fleischer, L., Iwata, S.: A push-relabel framework for submodular function minimization and applications to parametric optimization. Discrete Appl. Math. 131(2), 311–322 (2003)

    MathSciNet  MATH  Google Scholar 

  73. Flum, J., Grohe, M.: Parametrized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2006)

    MATH  Google Scholar 

  74. Freuder, E.C.: A sufficient condition for backtrack-bounded search. J. ACM 32, 755–761 (1985)

    MathSciNet  MATH  Google Scholar 

  75. Freuder, E.C.: Complexity of K-tree structured constraint satisfaction problems. In: Proceedings of the 8th National Conference on Artificial Intelligence (AAAI’90), pp. 4–9 (1990)

    Google Scholar 

  76. Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Annals of Discrete Mathematics, vol. 58. North-Holland, Amsterdam (2005)

    Google Scholar 

  77. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)

    MATH  Google Scholar 

  78. Geiger, D.: Closed systems of functions and predicates. Pac. J. Math. 27(1), 95–100 (1968)

    MathSciNet  MATH  Google Scholar 

  79. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)

    MATH  Google Scholar 

  80. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)

    MathSciNet  MATH  Google Scholar 

  81. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum flow problem. J. ACM 35(4), 921–940 (1988)

    MathSciNet  MATH  Google Scholar 

  82. Gottlob, G., Greco, G., Scarcello, F.: Tractable optimization problems through hypergraph-based structural restrictions. In: Proceedings of the 36th International Colloquium on Automata, Languages and Programming (ICALP’09, Part II). Lecture Notes in Computer Science, vol. 5556, pp. 16–30. Springer, Berlin (2007)

    Google Scholar 

  83. Gottlob, G., Leone, N., Scarcello, F.: A comparison of structural CSP decomposition methods. Artif. Intell. 124(2), 243–282 (2000)

    MathSciNet  MATH  Google Scholar 

  84. Gottlob, G., Leone, N., Scarcello, F.: Hypertree decomposition and tractable queries. J. Comput. Syst. Sci. 64(3), 579–627 (2002)

    MathSciNet  MATH  Google Scholar 

  85. Gottlob, G., Miklós, Z., Schwentick, T.: Generalized hypertree decompositions: NP-hardness and tractable variants. J. ACM 56(6) (2009)

    Google Scholar 

  86. Gottlob, G., Szeider, S.: Fixed-parameter algorithms for artificial intelligence, constraint satisfaction and database problems. Comput. J. 51(3), 303–325 (2008)

    Google Scholar 

  87. Grädel, E., Kolaitis, P.G., Libkin, L., Marx, M., Spencer, J., Vardi, M.Y., Venema, Y., Weinstein, S.: Finite Model Theory and Its Applications. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2007)

    MATH  Google Scholar 

  88. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems seen from the other side. J. ACM 54(1), 1–24 (2007)

    MathSciNet  Google Scholar 

  89. Grohe, M., Marx, D.: Constraint solving via fractional edge covers. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’06), pp. 289–298. SIAM, Philadelphia (2006)

    Google Scholar 

  90. Grötschel, M., Lovasz, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–198 (1981)

    MathSciNet  MATH  Google Scholar 

  91. Grötschel, M., Lovasz, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Algorithms and Combinatorics, vol. 2. Springer, Berlin (1988)

    MATH  Google Scholar 

  92. Gutin, G., Hell, P., Rafiey, A., Yeo, A.: A dichotomy for minimum cost graph homomorphisms. Eur. J. Comb. 29(4), 900–911 (2008)

    MathSciNet  MATH  Google Scholar 

  93. Gutin, G., Kim, E.: Introduction to the minimum cost homomorphism problem for directed and undirected graphs. Lect. Notes Ramanujan Math. Soc. 7, 25–37 (2008)

    Google Scholar 

  94. Gutin, G., Rafiey, A., Yeo, A., Tso, M.: Level of repair analysis and minimum cost homomorphisms of graphs. Discrete Appl. Math. 154(6), 881–889 (2006)

    MathSciNet  MATH  Google Scholar 

  95. Gyssens, M., Jeavons, P.G., Cohen, D.A.: Decomposing constraint satisfaction problems using database techniques. Artif. Intell. 66(1), 57–89 (1994)

    MathSciNet  MATH  Google Scholar 

  96. Hell, P., Nešetřil, J.: On the complexity of H-coloring. J. Comb. Theory, Ser. B 48(1), 92–110 (1990)

    MATH  Google Scholar 

  97. Hell, P., Nešetřil, J.: Graphs and Homomorphisms. Oxford University Press, London (2004)

    MATH  Google Scholar 

  98. Hell, P., Nešetřil, J.: Colouring, constraint satisfaction, and complexity. Comput. Sci. Rev. 2(3), 143–163 (2008)

    Google Scholar 

  99. Idziak, P.M., Markovic, P., McKenzie, R., Valeriote, M., Willard, R.: Tractability and learnability arising from algebras with few subpowers. SIAM J. Comput. 39(7), 3023–3037 (2010)

    MathSciNet  MATH  Google Scholar 

  100. Iwata, S.: A fully combinatorial algorithm for submodular function minimization. J. Comb. Theory, Ser. B 84(2), 203–212 (2002)

    MathSciNet  MATH  Google Scholar 

  101. Iwata, S.: A faster scaling algorithm for minimizing submodular functions. SIAM J. Sci. Comput. 32(4), 833–840 (2003)

    MathSciNet  MATH  Google Scholar 

  102. Iwata, S.: Submodular function minimization. Math. Program. 112(1), 45–64 (2008)

    MathSciNet  MATH  Google Scholar 

  103. Iwata, S., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algorithm for minimizing submodular functions. J. ACM 48(4), 761–777 (2001)

    MathSciNet  MATH  Google Scholar 

  104. Iwata, S., Orlin, J.B.: A simple combinatorial algorithm for submodular function minimization. In: Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’09), pp. 1230–1237. SIAM, Philadelphia (2009)

    Google Scholar 

  105. Jeavons, P.: Presenting constraints. In: Proceedings of the 18th International Conference on Automated Reasoning with Analytic Tableaux and Related Methods (TABLEAUX’09). Lecture Notes in Computer Science, vol. 5607, pp. 1–15. Springer, Berlin (2009). Invited talk

    Google Scholar 

  106. Jeavons, P., Cohen, D., Cooper, M.C.: Constraints, consistency and closure. Artif. Intell. 101(1–2), 251–265 (1998)

    MathSciNet  MATH  Google Scholar 

  107. Jeavons, P.G.: On the algebraic structure of combinatorial problems. Theor. Comput. Sci. 200(1–2), 185–204 (1998)

    MathSciNet  MATH  Google Scholar 

  108. Jeavons, P.G., Cohen, D.A., Gyssens, M.: A test for tractability. In: Proceedings of the 2nd International Conference on Constraint Programming (CP’96). Lecture Notes in Computer Science, vol. 1118, pp. 267–281. Springer, Berlin (1996)

    Google Scholar 

  109. Jeavons, P.G., Cohen, D.A., Gyssens, M.: Closure properties of constraints. J. ACM 44(4), 527–548 (1997)

    MathSciNet  MATH  Google Scholar 

  110. Jeavons, P.G., Cohen, D.A., Gyssens, M.: How to determine the expressive power of constraints. Constraints 4(2), 113–131 (1999)

    MathSciNet  MATH  Google Scholar 

  111. Jonsson, P.: Boolean constraint satisfaction: complexity results for optimization problems with arbitrary weights. Theor. Comput. Sci. 244(1–2), 189–203 (2000)

    MathSciNet  MATH  Google Scholar 

  112. Jonsson, P., Klasson, M., Krokhin, A.: The approximability of three-valued MAX CSP. SIAM J. Sci. Comput. 35(6), 1329–1349 (2006)

    MathSciNet  MATH  Google Scholar 

  113. Jonsson, P., Krokhin, A.: Maximum H-colourable subdigraphs and constraint optimization with arbitrary weights. J. Comput. Syst. Sci. 73(5), 691–702 (2007)

    MathSciNet  MATH  Google Scholar 

  114. Jonsson, P., Kuivinen, F., Nordh, G.: MAX ONES generalized to larger domains. SIAM J. Sci. Comput. 38(1), 329–365 (2008)

    MathSciNet  MATH  Google Scholar 

  115. Jonsson, P., Kuivinen, F., Thapper, J.: Min CSP on four elements: moving beyond submodularity. In: Proceedings of the 17th International Conference on Principles and Practice of Constraint Programming (CP’11). Lecture Notes in Computer Science, vol. 6876, pp. 438–453. Springer, Berlin (2011)

    Google Scholar 

  116. Jonsson, P., Nordh, G.: Introduction to the maximum solution problem. In: Complexity of Constraints. Lecture Notes in Computer Science, vol. 5250, pp. 255–282. Springer, Berlin (2008)

    Google Scholar 

  117. Jonsson, P., Nordh, G., Thapper, J.: The maximum solution problem on graphs. In: Proceedings of the 32nd International Symposium on Mathematical Foundations of Computer Science (MFCS’07). Lecture Notes in Computer Science, vol. 4708, pp. 228–239. Springer, Berlin (2007)

    Google Scholar 

  118. Jonsson, P., Thapper, J.: Approximability of the maximum solution problem for certain families of algebras. In: Proceedings of the 4th International Computer Science Symposium in Russia (CSR’09). Lecture Notes in Computer Science, vol. 5675, pp. 215–226. Springer, Berlin (2009)

    Google Scholar 

  119. Khanna, S., Sudan, M., Trevisan, L., Williamson, D.: The approximability of constraint satisfaction problems. SIAM J. Sci. Comput. 30(6), 1863–1920 (2001)

    MathSciNet  MATH  Google Scholar 

  120. Kolaitis, P.G., Vardi, M.Y.: Conjunctive-query containment and constraint satisfaction. J. Comput. Syst. Sci. 61(2), 302–332 (2000)

    MathSciNet  MATH  Google Scholar 

  121. Kolaitis, P.G., Vardi, M.Y.: A logical approach to constraint satisfaction. In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds.) Complexity of Constraints: An Overview of Current Research Themes. Lecture Notes in Computer Science, vol. 5250, pp. 125–155. Springer, Berlin (2008)

    Google Scholar 

  122. Kolmogorov, V., Živný, S.: The complexity of conservative valued CSPs. Tech. rep. (2011). arXiv:1110.2809

  123. Kolmogorov, V., Živný, S.: The complexity of conservative valued CSPs. In: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’12), pp. 750–759. SIAM, Philadelphia (2012). Full version available on arXiv:1110.2809

    Google Scholar 

  124. Korte, B., Vygen, J.: Combinatorial Optimization. Algorithms and Combinatorics, vol. 21, 4th edn. Springer, Berlin (2007)

    Google Scholar 

  125. Krokhin, A., Jeavons, P., Jonsson, P.: Reasoning about temporal relations: the tractable subalgebras of Allen’s interval algebra. J. ACM 50(5), 591–640 (2003)

    MathSciNet  Google Scholar 

  126. Krokhin, A., Larose, B.: Maximizing supermodular functions on product lattices, with application to maximum constraint satisfaction. SIAM J. Discrete Math. 22(1), 312–328 (2008)

    MathSciNet  MATH  Google Scholar 

  127. Kun, G.: Constraints, MMSNP and expander structures. Tech. rep. (2007). arXiv:0706.1701

  128. Kun, G., Nešetřil, J.: Forbidden lifts (NP and CSP for combinatorialists). Eur. J. Comb. 29(4), 930–945 (2008)

    MATH  Google Scholar 

  129. Kun, G., Szegedy, M.: A new line of attack on the dichotomy conjecture. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC’09), pp. 725–734 (2009)

    Google Scholar 

  130. Ladner, R.E.: On the structure of polynomial time reducibility. J. ACM 22(1), 155–171 (1975)

    MathSciNet  MATH  Google Scholar 

  131. Larose, B., Zádori, L.: Bounded width problems and algebras. Algebra Univers. 56(3–4), 439–466 (2007)

    Google Scholar 

  132. Lauritzen, S.L.: Graphical Models. Oxford University Press, London (1996)

    Google Scholar 

  133. Lovász, L.: Submodular functions and convexity. In: Bachem, A., Grötschel, M., Korte, B. (eds.) Mathematical Programming—The State of the Art, pp. 235–257. Springer, Berlin (1983)

    Google Scholar 

  134. Mackworth, A., Freuder, E.: The complexity of constraint satisfaction revisited. Artif. Intell. 59(1–2), 57–62 (1993)

    Google Scholar 

  135. Madelaine, F.R., Martin, B.: A tetrachotomy for positive first-order logic without equality. In: Proceedings of the 26th Annual IEEE Symposium on Logic in Computer Science (LICS’11), pp. 311–320. IEEE Computer Society, Los Alamitos (2011)

    Google Scholar 

  136. Madelaine, F.R., Martin, B.: The complexity of positive first-order logic without equality. ACM Trans. Comput. Log. 13(1), 5 (2012)

    MathSciNet  Google Scholar 

  137. Maróti, M., McKenzie, R.: Existence theorems for weakly symmetric operations. Algebra Univers. 59(3–4), 463–489 (2008)

    MATH  Google Scholar 

  138. Martin, B.: First-order model checking problems parameterized by the model. In: Proceedings of the 4th Conference on Computability in Europe (CiE’08). Lecture Notes in Computer Science, vol. 5028, pp. 417–427. Springer, Berlin (2008)

    Google Scholar 

  139. Marx, D.: Approximating fractional hypertree width. ACM Trans. Algorithms 6(2) (2010)

    Google Scholar 

  140. Marx, D.: Can you beat treewidth? Theory Comput. 6(1), 85–112 (2010)

    MathSciNet  Google Scholar 

  141. Marx, D.: Tractable hypergraph properties for constraint satisfaction and conjunctive queries. In: Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC’10), pp. 735–744 (2010)

    Google Scholar 

  142. Marx, D.: Tractable structures for constraint satisfaction with truth tables. Theory Comput. Syst. 48(3), 444–464 (2011)

    MathSciNet  MATH  Google Scholar 

  143. Montanari, U.: Networks of constraints: fundamental properties and applications to picture processing. Inf. Sci. 7, 95–132 (1974)

    MathSciNet  MATH  Google Scholar 

  144. Nagamochi, H., Ibaraki, T.: Computing edge-connectivity in multigraphs and capacitated graphs. SIAM J. Discrete Math. 5(1), 54–66 (1992)

    MathSciNet  MATH  Google Scholar 

  145. Narayanan, H.: Submodular Functions and Electrical Networks. North-Holland, Amsterdam (1997)

    MATH  Google Scholar 

  146. Nebel, B., Bürckert, H.J.: Reasoning about temporal relations: a maximal tractable subclass of Allen’s interval algebra. J. ACM 42(1), 43–66 (1995)

    MATH  Google Scholar 

  147. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. John Wiley & Sons, New York (1988)

    MATH  Google Scholar 

  148. Nešetřil, J., Siggers, M.H., Zádori, L.: A combinatorial constraint satisfaction problem dichotomy classification conjecture. Eur. J. Comb. 31(1), 280–296 (2010)

    MATH  Google Scholar 

  149. Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function minimization. Math. Program. 118(2), 237–251 (2009)

    MathSciNet  MATH  Google Scholar 

  150. Queyranne, M.: Minimising symmetric submodular functions. Math. Program. 82(1–2), 3–12 (1998)

    MathSciNet  MATH  Google Scholar 

  151. Raghavendra, P.: Optimal algorithms and inapproximability results for every CSP? In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing (STOC’08), pp. 245–254 (2008)

    Google Scholar 

  152. Reingold, O.: Undirected connectivity in log-space. Journal of the ACM 55(4) (2008)

    Google Scholar 

  153. Rossi, F., van Beek, P., Walsh, T. (eds.): The Handbook of Constraint Programming. Elsevier, Amsterdam (2006)

    Google Scholar 

  154. Scarcello, F., Gottlob, G., Greco, G.: Uniform constraint satisfaction problems and database theory. In: Complexity of Constraints. Lecture Notes in Computer Science, vol. 5250, pp. 156–195. Springer, Berlin (2008)

    Google Scholar 

  155. Schaefer, T.J.: The complexity of satisfiability problems. In: Proceedings of the 10th Annual ACM Symposium on Theory of Computing (STOC’78), pp. 216–226. ACM, New York (1978)

    Google Scholar 

  156. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: hard and easy problems. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI’95), pp. 631–637 (1995)

    Google Scholar 

  157. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)

    MATH  Google Scholar 

  158. Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. J. Comb. Theory, Ser. B 80(2), 346–355 (2000)

    MathSciNet  MATH  Google Scholar 

  159. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and Combinatorics, vol. 24. Springer, Berlin (2003)

    MATH  Google Scholar 

  160. Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44(4), 585–591 (1997)

    MathSciNet  MATH  Google Scholar 

  161. Takhanov, R.: A dichotomy theorem for the general minimum cost homomorphism problem. In: Proceedings of the 27th International Symposium on Theoretical Aspects of Computer Science (STACS’10), pp. 657–668 (2010)

    Google Scholar 

  162. Takhanov, R.: Extensions of the minimum cost homomorphism problem. In: Proceedings of the 16th International Computing and Combinatorics Conference (COCOON’10). Lecture Notes in Computer Science, vol. 6196, pp. 328–337. Springer, Berlin (2010)

    Google Scholar 

  163. Topkis, D.: Supermodularity and Complementarity. Princeton University Press, Princeton (1998)

    Google Scholar 

  164. Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vols. 1 & 2. Computer Science Press, New York (1989)

    Google Scholar 

  165. Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn. 1(1–2), 1–305 (2008)

    MATH  Google Scholar 

  166. Willard, R.: Testing expressibility is hard. In: Proceedings of the 16th International Conference on Principles and Practice of Constraint Programming (CP’10). Lecture Notes in Computer Science, vol. 6308, pp. 9–23. Springer, Berlin (2010)

    Google Scholar 

  167. Živný, S., Jeavons, P.G.: The complexity of valued constraint models. In: Proceedings of the 15th International Conference on Principles and Practice of Constraint Programming (CP’09). Lecture Notes in Computer Science, vol. 5732, pp. 833–841. Springer, Berlin (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Živný, S. (2012). Background. In: The Complexity of Valued Constraint Satisfaction Problems. Cognitive Technologies. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33974-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33974-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33973-8

  • Online ISBN: 978-3-642-33974-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics