Skip to main content

Inequalities of Jensen and Chebyshev Type for Interval-Valued Measures Based on Pseudo-integrals

  • Chapter
Intelligent Systems: Models and Applications

Abstract

Since interval-valued measures have applications in number of practical areas, this paper is focused on two approaches to this problem as well as on the corresponding generalizations of the Jensen and the Chebyshev integral inequalities. The first approach is based on an interval-valued measure defined by the pseudo-integral of interval-valued function, while the second approach considers an interval-valued measure obtained through pseudo-integrals of real-valued functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agahi, H., Mesiar, R., Ouyang, Y.: Chebyshev type inequalities for pseudo-integrals. Nonlinear Analysis: Theory, Methods and Applications 72, 2737–2743 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agahi, H., Mesiar, R., Ouyang, Y.: General Minkowski type inequalities for Sugeno integrals. Fuzzy Sets and Systems 161, 708–715 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Agahi, H., Mesiar, R., Ouyang, Y., Pap, E., Štrboja, M.: Hölder and Minkowski type inequalities for pseudo-integral. Applied Mathematics and Computation 217, 8630–8639 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Agahi, H., Mesiar, R., Ouyang, Y., Pap, E., Štrboja, M.: Berwald type inequality for Sugeno integral. Applied Mathematics and Computation 217, 4100–4108 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aumann, R.J.: Integrals of set-valued functions. Journal of Mathematical Analysis and Applictions 12, 1–12 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  6. Caballero, J., Sadarangani, K.: A CauchySchwarz type inequality for fuzzy integrals. Nonlinear Analysis: Theory, Methods and Applications 73, 3329–3335 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Grbić, T., Štajner-Papuga, I., Nedović, L.: Pseudo-integral of set-valued funtions. In: Proc. of EUSFLAT 2007, vol. I, pp. 221–225 (2007)

    Google Scholar 

  8. Grbić, T., Štrboja, M., Štajner-Papuga, I., Vivona, D., Mihailovi´, C.B.: Jensen type inequalities for pseudo-integrals of set-valued functions. In: Proc. of SISY 2010, Subotica, pp. 978–971 (2010) ISBN 978-1-4244-2407-8

    Google Scholar 

  9. Grbić, T., Štajner-Papuga, I., Štrboja, M.: An approach to pseudo-integration of set-valued functions. Inf. Sci. 181(11), 2278–2292 (2011)

    Article  MATH  Google Scholar 

  10. Hiai, F., Umegaki, H.: Integrals, conditional expectations, and martingales of multivalued functions. J. Multivariate Anal. 7, 149–182 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hong, D.H.: A Liapunov type inequality for Sugeno integrals. Nonlinear Analysis: Theory, Methods and Applications 74, 7296–7303 (2011)

    Article  MATH  Google Scholar 

  12. Jang, L.C.: A note on convergence properties of interval-valued capacity functionals and Choquet integrals. Information Sciences 183, 151–158 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Klein, E., Thompson, A.C.: Theory of Correspondences. Wiley-Interscience Publication, New York (1984)

    MATH  Google Scholar 

  14. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers, Dordrecht (2000)

    MATH  Google Scholar 

  15. Kolokoltsov, V.N., Maslov, V.P.: Idempotent Analysis and Its Applications. Kluwer Academic Publishers, Dordrecht (1997)

    MATH  Google Scholar 

  16. Krätschmer, V.: Limit theorems for fuzzy-random variables. Fuzzy Sets and Systems 126, 256–263 (2002)

    Article  Google Scholar 

  17. Li, L.S., Sheng, Z.: The fuzzy set-valued measures generated by random variables. Fuzzy Sets Systems 97, 203–209 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Maslov, V.P., Samborskij, S.N.: Idempotent Analysis. American Mathematical Society, Providence (1992)

    Google Scholar 

  19. Mesiar, R., Pap, E.: Idempotent integral as limit of g -integrals. Fuzzy Sets and Systems 102, 385–392 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Michta, M.: On set-valued stochastic integrals and fuzzy stochastic equations. Fuzzy Sets and Systems 177, 1–19 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Molchanov, I.: Theory of Random Sets. Springer (2005)

    Google Scholar 

  22. Pap, E.: g-calculus. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 23, 145–156 (1993)

    MathSciNet  MATH  Google Scholar 

  23. Pap, E.: Null-Additive Set Functions. Kluwer Academic Publishers, Dordrecht (1995)

    MATH  Google Scholar 

  24. Pap, E.: Generalized real analysis and its applications. International Journal of Approximate Reasoning 47, 368–386 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pap, E., Štrboja, M.: Generalization of the Jensen inequality for pseudo-integral. Information Sciences 180, 543–548 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Perović, A., Ognjanović, Z., Rašković, M., Radojević, R.: Finitely additive probability measures on classical propositional formulas definable by Gödel’s t-norm and product t-norm. Fuzzy Sets and Systems 169, 65–90 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Puri, M.L., Ralescu, D.A.: Fuzzy random variables. Journal of Mathematical Analysis and Applications 114, 409–422 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  28. Román-Flores, H., Bassanezi, R.C.: On multivalued fuzzy entropies. Fuzzy Sets Syst. 86, 169–177 (1997)

    Article  MATH  Google Scholar 

  29. Román-Flores, H., Flores-Franulič, A., Chalco-Cano, Y.: A Jensen type inequality for fuzzy integrals. Inform. Sci. 177, 3192–3201 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schjaer-Jacobsen, H.: Representation and calculation of economic ucertainties: intervals, fuzzy numbers, and probabilities. Int. J. Prod. Econ. 78, 91–98 (2002)

    Article  Google Scholar 

  31. Štajner-Papuga, I., Grbić, T., Štrboja, M.: A note on absolute continuity for the interval-valued measures based on pseudo-integral of interval-valued functions. In: Proc. of SISY 2009, Subotica, pp. 279–284 (2009) ISBN 978-1-4244-5349-8

    Google Scholar 

  32. Štrboja, M., Grbić, T., Grujić, G., Mihailović, B., Medić, S.: Chebyshev integral type inequalities for pseudo-integrals of set-valued functions. In: Proc. of SISY 2011, Subotica, pp. 978–971 (2011) ISBN 978-1-4244-2407-8

    Google Scholar 

  33. Štrboja, M., Grbić, T., Štajner-Papuga, I., Grujić, G., Medić, S.: Jensen and Chebyshev type inequalities for pseudo-integrals of set-valued functions (submitted)

    Google Scholar 

  34. Wang, Z., Klir, G.J.: Fuzzy Measure Theory. Plenum Press, New York (1992)

    MATH  Google Scholar 

  35. Weichselberger, K.: The theory of interval-probability as a unifying concept for uncertainty. Int. J. Approx. Reas. 24, 149–170 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatjana Grbić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grbić, T., Medić, S., Štajner-Papuga, I., Došenović, T. (2013). Inequalities of Jensen and Chebyshev Type for Interval-Valued Measures Based on Pseudo-integrals. In: Pap, E. (eds) Intelligent Systems: Models and Applications. Topics in Intelligent Engineering and Informatics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33959-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33959-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33958-5

  • Online ISBN: 978-3-642-33959-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics