Skip to main content

Progressive Pedestrian Localization Using Neural Networks

  • Chapter
Intelligent Systems: Models and Applications

Part of the book series: Topics in Intelligent Engineering and Informatics ((TIEI,volume 3))

Abstract

The precise localization of pedestrians in images is a difficult problem with many practical applications in the fields of driver assistance, autonomous vehicles and visual surveillance. Localization can be treated as a subsequent step to pedestrian detection that aims at finding the exact position of pedestrians in an input image. In this work, two different approaches for pedestrian localization using neural networks with local receptive fields are presented. The first approach uses a trained ranking classifier to determine the relative order of image windows in regard to their localization quality (coverage) of the pedestrian. Localization is then performed via sampling of the window space in the vicinity of an initial detection. For the second approach, a binary classifier is trained to stepwise move an initial window towards the optimal position. Only few network evaluations are required for this method to converge, making it applicable for real-time detection systems. It is shown how the localization task can be split up into consecutive subtasks, which allows the training of a dedicated classifier for each subtask. This progressive localization scheme improves localization precision and simplifies evaluation of the resulting classifiers. Both approaches are evaluated in detail on the publicly available Daimler Pedestrian Detection Benchmark dataset and the results are compared to a standard detection approach based on non-maximum suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blaschko, M.B., Lampert, C.H.: Learning to Localize Objects with Structured Output Regression. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 2–15. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender, G.: Learning to rank using gradient descent. In: Proc. Int. Conf. Machine Learning, pp. 89–96 (2005), doi:10.1145/1102351.1102363

    Google Scholar 

  3. Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to Order Things. Journal of Artificial Intelligence Research 10(1), 243–270 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Dalal, N., Triggs, W.: Histograms of Oriented Gradients for Human Detection. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 886–893 (2004), http://eprints.pascal-network.org/archive/00000802/

  5. Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: A benchmark. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 304–311 (2009), doi:10.1109/CVPR.2009.5206631

    Google Scholar 

  6. Elliott, D.L.: A Better Activation Function for Artificial Neural Networks. Institute for Systems Research. Univ. of Maryland (1993)

    Google Scholar 

  7. Enzweiler, M., Gavrila, D.M.: Monocular Pedestrian Detection: Survey and Experiments. IEEE Trans. Pattern Anal. 12, 2179–2195 (2009)

    Article  Google Scholar 

  8. Everingham, M., Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The Pascal Visual Object Classes (VOC) Challenge. International Journal of Computer Vision 88(2), 303–338 (2009)

    Article  Google Scholar 

  9. Fukushima, K.: Neocognitron: A Hierarchical Neural Network Capable of Visual Pattern Recognition. Neural Networks 1(2) (1988)

    Google Scholar 

  10. Gressmann, M., Loehlein, O., Palm, G.: Pedestrian Localization. In: Proceedings of 2011 IEEE 9th International Symposium on Intelligent Systems and Informatics, pp. 371–376 (2011), doi:10.1109/SISY.2011.6034355

    Google Scholar 

  11. Gressmann, M., Palm, G., Loehlein, O.: Surround view pedestrian detection using heterogeneous classifier cascades. In: Proceedings 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), pp. 1317–1324 (2011), doi:10.1109/ITSC.2011.6082895

    Google Scholar 

  12. Lampert, C., Blaschko, M., Hofmann, T.: Beyond Sliding Windows: Object Localization by Efficient Subwindow Search. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  13. LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient BackProp. In: Orr, G.B., Müller, K.-R. (eds.) NIPS-WS 1996. LNCS, vol. 1524, pp. 9–50. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  14. Lecun, Y., Kavukcuoglu, K.: Convolutional Networks and Applications in Vision. In: Proc. International Symposium on Circuits and Systems, pp. 253–256 (2010), doi:10.1109/ISCAS.2010.5537907

    Google Scholar 

  15. Munder, S., Gavrila, D.M.: An experimental study on pedestrian classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(11), 1863–1868 (2006)

    Article  Google Scholar 

  16. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  Google Scholar 

  17. Shashua, A., Gdalyahu, Y., Hayun, G.: Pedestrian Detection for Driving Assistance Systems: Single-frame Classification and System Level Performance. In: Proc. IEEE Conf. Intelligent Vehicle Symp., pp. 1–6 (2004), doi:10.1109/IVS.2004.1336346

    Google Scholar 

  18. Vaillant, R., Monrocq, C., Le Cun, Y.: An original approach for the localization of objects in images. In: Proc. Int. Conf. Artificial Neural Networks, pp. 26–30 (1993)

    Google Scholar 

  19. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. I-511–I-518 (2001)

    Google Scholar 

  20. Wang, X., Han, T.X.: An HOG-LBP Human Detector with Partial Occlusion Handling. In: Proc. IEEE Int. Conf. Computer Vision, pp. 32–39 (2009), doi:10.1109/ICCV.2009.5459207

    Google Scholar 

  21. Wohler, C., Anlauf, J.K.: An adaptable time-delay neural-network algorithm for image sequence analysis. IEEE Transactions on Neural Networks 10(6), 1531–1536 (1999)

    Article  Google Scholar 

  22. Wojek, C., Schiele, B.: A performance evaluation of single and multi-feature people detection. In: Proc. DAGM Symp. Pattern Recognition, pp. 82–91 (2008), doi:10.1007/978-3-540-69321-5_9

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Gressmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gressmann, M., Palm, G., Löhlein, O. (2013). Progressive Pedestrian Localization Using Neural Networks. In: Pap, E. (eds) Intelligent Systems: Models and Applications. Topics in Intelligent Engineering and Informatics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33959-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33959-2_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33958-5

  • Online ISBN: 978-3-642-33959-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics