Skip to main content

Generalizations of Integral Inequalities for Integrals Based on Nonadditive Measures

  • Chapter

Part of the book series: Topics in Intelligent Engineering and Informatics ((TIEI,volume 3))

Abstract

There is given an overview of generalizations of the integral inequalities for integrals based on nonadditive measures. The Hölder, Minkowski, Jensen, Chebishev and Berwald inequalities are generalized to the Choquet and Sugeno integrals. A general inequality which cover Hölder and Minkowski type inequalities is considered for the universal integral. The corresponding inequalities for important cases of the pseudo-integral and applications of these inequalities in pseudo-probability are also given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agahi, H., Mesiar, R., Ouyang, Y.: General Minkowski type inequalities for Sugeno integrals. Fuzzy Sets and Systems 161, 708–715 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agahi, H., Mesiar, R., Ouyang, Y.: New general extensions of Chebyshev type inequalities for Sugeno integrals. Int. J. of Approximate Reasoning 51, 135–140 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Agahi, H., Mesiar, R., Ouyang, Y.: Chebyshev type inequalities for pseudo-integrals. Nonlinear Analysis: Theory, Methods and Applications 72, 2737–2743 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Agahi, H., Mesiar, R., Ouyang, Y., Pap, E., Štrboja, M.: Berwald type inequality for Sugeno integral. Applied Mathematics and Computation 217, 4100–4108 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Agahi, H., Mesiar, R., Ouyang, Y., Pap, E., Štrboja, M.: Hölder and Minkowski type inequalities for pseudo-integral. Applied Mathematics and Computation 217(21), 8630–8639 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Agahi, H., Mesiar, R., Ouyang, Y., Pap, E., Štrboja, M.: General Chebyshev type inequalities for universal integral. Information Sciences 107, 171–178 (2012)

    Article  Google Scholar 

  7. Akian, M.: Theory of cost measures: convergence of decision variables. INRIA Report (1995)

    Google Scholar 

  8. Akian, M.: Densities of idempotent measures and large deviations. Transactions of the American Mathematical Society 351(11), 4515–4543 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Akian, M., Quadrat, J.P., Viot, M.: Duality between Probability and Optimization. In: Gunawardena, J. (ed.) Idempotency. Publication of the Isaac Newton Institute. Crambridge University Press (1998)

    Google Scholar 

  10. Benvenuti, P., Mesiar, R., Vivona, D.: Monotone set functions-based integrals. In: Pap, E. (ed.) Handbook of Measure Theory, vol. II, pp. 1329–1379. Elsevier (2002)

    Google Scholar 

  11. Billingsley, P.: Probability and Measure. John Wiley & Sons, New York (1995)

    MATH  Google Scholar 

  12. Bullen, P.S.: Handbook of Means and Their Inequaliies. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  13. Chateauneuf, A.: Decomposable Measures, Distorted Probabilities and Concave Capacities. Mathematical Social Sciences 31, 19–37 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Del Moral, P.: Résolution particulaire des problèmes d’estimation et d’optimisation non-linéaires. Thesis dissertation, Université Paul Sabatier, Toulouse (1994)

    Google Scholar 

  15. Denneberg, D.: Non-additive measure and integral. Kluwer Academic Publishers, Dordrecht (1994)

    MATH  Google Scholar 

  16. Flores-Franulič, A., Román-Flores, H.: A Chebyshev type inequality for fuzzy integrals. Applied Mathematics and Computation 190, 1178–1184 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions. Encyclopedia of Mathematics and Its Applications, vol. 127. Cambridge University Press (2009)

    Google Scholar 

  18. Klement, E.P., Mesiar, R., Pap, E.: Triangular norms. Trends in Logic. Studia Logica Library, vol. 8. Kluwer Academic Publishers, Dodrecht (2000)

    Google Scholar 

  19. Klement, E.P., Mesiar, R., Pap, E.: A universal integral as Common Frame for Choquet and Sugeno Integral. IEEE Trans. on Fuzzy Systems 18(1), 178–187 (2010)

    Article  Google Scholar 

  20. Kolokoltsov, V.N., Maslov, V.P.: Idempotent calculus as the apparatus of optimization theory. I, Functional. Anal. i Prilozhen 23(1), 1–14 (1989)

    Article  MathSciNet  Google Scholar 

  21. Kolokoltsov, V.N., Maslov, V.P.: The general form of the endomorphisms in the space of continuous functions with values in a numerical commutative semiring (with the operation ⊕ = max). Soviet Math. Dokl. 36(1), 55–59 (1988)

    MathSciNet  Google Scholar 

  22. Kolokoltsov, V.N., Maslov, V.P.: Idempotent Analysis and Its Applications. Kluwer Academic Publishers, Dordrecht (1997)

    MATH  Google Scholar 

  23. Kuich, W.: Semirings, Automata, Languages. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  24. Maslov, V.: Méthodes Opératorielles. Editions MIR, Moscow (1987)

    MATH  Google Scholar 

  25. Maslov, V.P., Samborskij, S.N. (eds.): Idempotent Analysis. Advances in Soviet Mathematics, vol. 13. Amer. Math. Soc., Providence (1992)

    MATH  Google Scholar 

  26. Maslov, V.P., Kolokoltsov, V.N.: Idempotent analysis and its applications to optimal control theory, Moscow, Nauka (1994) (in Russian)

    Google Scholar 

  27. Mesiar, R., Li, J., Pap, E.: The Choquet integral as Lebesgue integral and related inequalities. Kybernetika 46, 1098–1107 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Mesiar, R., Ouyang, Y.: General Chebyshev type inequalities for Sugeno integrals. Fuzzy Sets and Systems 160, 58–64 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mesiar, R., Pap, E.: Idempotent integral as limit of g -integrals. Fuzzy Sets and Systems 102, 385–392 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ouyang, Y., Fang, J., Wang, L.: Fuzzy Chebyshev type inequality. Int. J. of Approximate Reasoning 48, 829–835 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ouyang, Y., Mesiar, R., Agahi, H.: An inequality related to Minkowski type for Sugeno integrals. Information Sciences 180(14), 2793–2801 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ouyang, Y., Mesiar, R.: On the Chebyshev type inequality for seminormed fuzzy integral. Applied Mathematics Letters 22, 1810–1815 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Pap, E.: An integral generated by decomposable measure. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20(1), 135–144 (1990)

    MathSciNet  MATH  Google Scholar 

  34. Pap, E.: g-calculus. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 23(1), 145–156 (1993)

    MathSciNet  MATH  Google Scholar 

  35. Pap, E.: Applications of decomposable measures. In: Höhle, U., Rodabaugh, R.S. (eds.) Handbook Mathematics of Fuzzy Sets-Logic, Topology and Measure Theory, pp. 675–700. Kluwer Academic Publishers (1999)

    Google Scholar 

  36. Pap, E.: Null-Additive Set Functions. Kluwer Academic Publishers, Dordrecht (1995)

    MATH  Google Scholar 

  37. Pap, E.: Decomposable measures and nonlinear equations. Fuzzy Sets and Systems 92, 205–222 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pap, E. (ed.): Handbook of Measure Theory. Elsevier Science, Amsterdam (2002)

    MATH  Google Scholar 

  39. Pap, E.: Pseudo-Additive Measures and Their Aplications. In: Pap, E. (ed.) Handbook of Measure Theory, vol. II, pp. 1403–1465. Elsevier (2002)

    Google Scholar 

  40. Pap, E.: Pseudo-analysis approach to nonlinear partial differential equations. Acta Polytechnica Hungarica 5, 31–45 (2008)

    Google Scholar 

  41. Pap, E., Štrboja, M.: Generalization of the Chebishev Inequality for Pseudo-Integral. In: Proceedings of the 7th International Symposium on Intelligent Systems and Informatics SISY Subotica, IEEE Catalog Number: CFP0984C-CDR, pp. 123–126 (2009)

    Google Scholar 

  42. Pap, E., Štrboja, M.: Generalization of the Jensen inequality for pseudo-integral. Information Sciences 180, 543–548 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Román-Flores, H., Flores-Franulič, A., Chalco-Cano, Y.: A Jensen type inequality for fuzzy integrals. Information Sciences 177, 3192–3201 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sirbiladze, G., Gachechiladze, T.: Restored fuzzy measures in expert decision-making. Information Sciences 169, 71–95 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sugeno, M.: Theory of fuzzy integrals and its applications. Ph.D. Thesis, Tokyo Institute of Technology (1974)

    Google Scholar 

  46. Sugeno, M., Murofushi, T.: Pseudo-additive measures and integrals. J. Math. Anal. Appl. 122, 197–222 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tsai, H.-H., Lu, I.-Y.: The evalution of service quality using generalized Choquet integral. Information Sciences 176, 640–663 (2006)

    Article  MATH  Google Scholar 

  48. Wang, Z., Klir, G.J.: Generalized measure theory. Springer, Boston (2009)

    Book  MATH  Google Scholar 

  49. Wang, R. S.: Some inequalities and convergence theorems for Choquet integrals. J. Appl. Comput. 35(1-2), 305-321 (2011).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Endre Pap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pap, E., Štrboja, M. (2013). Generalizations of Integral Inequalities for Integrals Based on Nonadditive Measures. In: Pap, E. (eds) Intelligent Systems: Models and Applications. Topics in Intelligent Engineering and Informatics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33959-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33959-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33958-5

  • Online ISBN: 978-3-642-33959-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics