Skip to main content

Information Theoretic Security by the Laws of Classical Physics

(Plenary Paper)

  • Conference paper
Soft Computing Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 195))

Abstract

It has been shown recently that the use of two pairs of resistors with enhanced Johnson-noise and a Kirchhoff-loop—i.e., a Kirchhoff-Law-Johnson-Noise (KLJN) protocol—for secure key distribution leads to information theoretic security levels superior to those of a quantum key distribution, including a natural immunity against a man-in-the-middle attack. This issue is becoming particularly timely because of the recent full cracks of practical quantum communicators, as shown in numerous peer-reviewed publications. This presentation first briefly surveys the KLJN system and then discusses related, essential questions such as: what are perfect and imperfect security characteristics of key distribution, and how can these two types of securities be unconditional (or information theoretical)? Finally the presentation contains a live demonstration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Merali, Z.: Hackers blind quantum cryptographers. Nature News (August 29, 2009), doi:10.1038/news.2010.436

    Google Scholar 

  2. Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Kurtsiefer, C., Makarov, V.: Full-field implementation of a perfect eavesdropper on a quantum cryptography system. Nature Communications 2 (article number 349) (2011), doi:10.1038/ncomms1348.

    Google Scholar 

  3. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Hacking commercial quantum cryptography systems by tailored bright illumination. Nature Photonics 4, 686–689 (2010), doi:10.1038/NPHOTON.2010.214

    Article  Google Scholar 

  4. Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Scarani, V., Makarov, V., Kurtsiefer, C.: Experimentally faking the violation of Bell’s inequalities. Phys. Rev. Lett. 107, 170404 (2011), doi:10.1103/PhysRevLett.107.170404

    Article  Google Scholar 

  5. Makarov, V., Skaar, J.: Faked states attack using detector efficiency mismatch on SARG04, phase-time, DPSK, and Ekert protocols. Quantum Information and Computation 8, 622–635 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Wiechers, C., Lydersen, L., Wittmann, C., Elser, D., Skaar, J., Marquardt, C., Makarov, V., Leuchs, G.: After-gate attack on a quantum cryptosystem. New J. Phys. 13, 013043 (2011), doi:10.1088/1367-2630/13/1/013043

    Google Scholar 

  7. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Thermal blinding of gated detectors in quantum cryptography. Optics Express 18, 27938–27954 (2010), doi:10.1364/OE.18.027938

    Article  Google Scholar 

  8. Jain, N., Wittmann, C., Lydersen, L., Wiechers, C., Elser, D., Marquardt, C., Makarov, V., Leuchs, G.: Device calibration impacts security of quantum key distribution. Phys. Rev. Lett. 107, 110501 (2011), doi:10.1103/PhysRevLett.107.110501

    Article  Google Scholar 

  9. Lydersen, L., Skaar, J., Makarov, V.: Tailored bright illumination attack on distributed-phase-reference protocols. J. Mod. Opt. 58, 680–685 (2011), doi:10.1080/09500340.2011.565889

    Article  Google Scholar 

  10. Lydersen, L., Akhlaghi, M.K., Majedi, A.H., Skaar, J., Makarov, V.: Controlling a superconducting nanowire single-photon detector using tailored bright illumination. New J. Phys. 13, 113042 (2011), doi:10.1088/1367-2630/13/11/113042

    Google Scholar 

  11. Lydersen, L., Makarov, V., Skaar, J.: Comment on Resilience of gated avalanche photodiodes against bright illumination attacks in quantum cryptography. Appl. Phys. Lett. 99, 196101 (2011), doi:10.1063/1.3658806

    Article  Google Scholar 

  12. Sauge, S., Lydersen, L., Anisimov, A., Skaar, J., Makarov, V.: Controlling an actively-quenched single photon detector with bright light. Opt. Express 19, 23590–23600 (2011)

    Article  Google Scholar 

  13. Lydersen, L., Jain, N., Wittmann, C., Maroy, O., Skaar, J., Marquardt, C., Makarov, V., Leuchs, G.: Superlinear threshold detectors in quantum cryptography. Phys. Rev. Lett. 84, 032320 (2011), doi:10.1103/PhysRevA.84.032320

    Google Scholar 

  14. Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J., Makarov, V.: Avoiding the blinding attack in QKD; REPLY (COMMENT). Nature Photonics 4, 801 (2010), doi:10.1038/nphoton.2010.278

    Article  Google Scholar 

  15. Makarov, V.: Controlling passively quenched single photon detectors by bright light. New J. Phys. 11, 065003 (2009), doi:10.1088/1367-2630/11/6/065003

    Google Scholar 

  16. Kish, L.B., Mingesz, R., Gingl, Z.: Unconditionally secure communication via wire. SPIE Newsroom (2007), doi:10.1117/2.1200709.0863

    Google Scholar 

  17. Johnson, J.B.: Thermal agitation of electricity in conductors. Nature 119, 50–51 (1927)

    Article  Google Scholar 

  18. Nyquist, H.: Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110–113 (1928)

    Article  Google Scholar 

  19. Born, M., Heisenberg, W., Jordan, P.: Quantum mechanics II. Z. Phys. 35, 557–615 (1926)

    Article  MATH  Google Scholar 

  20. Allahverdyan, A.E., Nieuwenhuizen, T.M.: Extraction of work from a single thermal bath in the quantum regime. Phys. Rev. Lett. 85, 1799–1802 (2000)

    Article  Google Scholar 

  21. Scully, M.O., Zubairy, M.S., Agarwal, G.S., Walther, H.: Extracting work from a single heat bath via vanishing quantum coherence. Science 299, 862–864 (2003)

    Article  Google Scholar 

  22. Kish, L.B.: Thermal noise engines. Chaos Solit. Fract. 44, 114–121 (2011), http://arxiv.org/abs/1009.5942

    Article  Google Scholar 

  23. Kish, L.B.: Noise-based logic: Binary, multi-valued, or fuzzy, with optional superposition of logic states. Phys. Lett. A 373, 911–918 (2009)

    Article  MATH  Google Scholar 

  24. Kish, L.B., Khatri, S., Sethuraman, S.: Noise-based logic hyperspace with the superposition of 2^N states in a single wire. Phys. Lett. A 373, 1928–1934 (2009)

    Article  MATH  Google Scholar 

  25. Bezrukov, S.M., Kish, L.B.: Deterministic multivalued logic scheme for information processing and routing in the brain. Phys. Lett. A 373, 2338–2342 (2009)

    Article  MATH  Google Scholar 

  26. Gingl, Z., Khatri, S., Kish, L.B.: Towards brain-inspired computing. Fluct. Noise Lett. 9, 403–412 (2010)

    Article  Google Scholar 

  27. Kish, L.B., Khatri, S., Horvath, T.: Computation using noise-based logic: Efficient string verification over a slow communication channel. Eur. J. Phys. B 79, 85–90 (2011), http://arxiv.org/abs/1005.1560

    Article  Google Scholar 

  28. Peper, F., Kish, L.B.: Instantaneous, non-squeezed, noise-based logic. Fluct. Noise Lett. 10, 231–237 (2011), http://www.worldscinet.com/fnl/10/1002/open-access/S0219477511000521.pdf

    Article  Google Scholar 

  29. Wen, H., Kish, L.B., Klappenecker, A., Peper, F.: New noise-based logic representations to avoid some problems with time complexity. Fluct. Noise Lett. (June, in press, 2012 issue), http://arxiv.org/abs/1111.3859

  30. Mullins, J.: Breaking the noise barrier. New Scientist (2780) (September 29, 2010), http://www.newscientist.com/article/mg20827801.500-breaking-the-noise-barrier.html?full=true

  31. Kish, L.B.: Totally secure classical communication utilizing Johnson(-like) noise and Kirchhoff’s law. Phys. Lett. A 352, 178–182 (2006)

    Article  MATH  Google Scholar 

  32. Cho, A.: Simple noise stymie spies without quantum weirdness. Science 309, 2148 (2005), http://www.ece.tamu.edu/~noise/news_files/science_secure.pdf

  33. Kish, L.B.: Protection against the man-in-the-middle-attack for the Kirchhoff-loop-Johnson(-like)-noise cipher and expansion by voltage-based security. Fluct. Noise Lett. 6, L57–L63 (2006), http://arxiv.org/abs/physics/0512177

  34. Mingesz, R., Gingl, Z., Kish, L.B.: Johnson(-like)-noise-Kirchhoff-loop based secure classical communicator characteristics, for ranges of two to two thousand kilometers, via model-line. Phys. Lett. A 372, 978–984 (2008)

    Article  MATH  Google Scholar 

  35. Palmer, D.J.: Noise encryption keeps spooks out of the loop. New Scientist (2605), 32 (2007), http://www.newscientist.com/article/mg19426055.300-noise-keeps-spooks-out-of-the-loop.html

  36. Kish, L.B., Horvath, T.: Notes on recent approaches concerning the Kirchhoff-law-Johnson-noise-based secure key exchange. Phys. Lett. A 373, 901–904 (2009)

    Article  Google Scholar 

  37. Scheuer, J., Yariv, A.: A classical key-distribution system based on Johnson (like) noise – How secure? Phys. Lett. A 359, 737–740 (2006)

    Article  MATH  Google Scholar 

  38. Kish, L.B., Scheuer, J.: Noise in the wire: The real impact of wire resistance for the Johnson(-like) noise based secure communicator. Phys. Lett. A 374, 2140–2142 (2010)

    Article  MATH  Google Scholar 

  39. Kish, L.B.: Response to Scheuer-Yariv: A classical key-distribution system based on Johnson (like) noise – How secure? Phys. Lett. A 359, 741–744 (2006)

    Article  MATH  Google Scholar 

  40. Hao, F.: Kish’s key exchange scheme is insecure. IEE Proc. Inform. Sec. 153, 141–142 (2006)

    Article  Google Scholar 

  41. Kish, L.B.: Response to Feng Hao’s paper Kish’s key exchange scheme is insecure. Fluct. Noise Lett. 6, C37–C41 (2006)

    Google Scholar 

  42. Liu, P.L.: A new look at the classical key exchange system based on amplified Johnson noise. Phys. Lett. A 373, 901–904 (2009)

    Article  MATH  Google Scholar 

  43. Horvath, T., Kish, L.B., Scheuer, J.: Effective privacy amplification for secure classical communications. Europhys. Lett. 94, 28002 (2011), http://arxiv.org/abs/1101.4264

    Article  Google Scholar 

  44. Kish, L.B., Saidi, O.: Unconditionally secure computers, algorithms and hardware. Fluct. Noise Lett. 8, L95–L98 (2008)

    Google Scholar 

  45. Kish, L.B., Mingesz, R.: Totally secure classical networks with multipoint telecloning (teleportation) of classical bits through loops with Johnson-like noise. Fluct. Noise Lett. 21, C9-C21 (2006)

    Google Scholar 

  46. Kish, L.B., Peper, F.: Information networks secured by the laws of physics. IEICE Trans. Commun. E95-B, 1501–1507 (2012)

    Google Scholar 

  47. http://en.wikipedia.org/wiki/Quantumcomputer

  48. Wiesner, S.: Conjugate coding. SIGACT News 15, 78–88 (1983)

    Article  Google Scholar 

  49. Bennett, C.H., Brassard, G.: Quantum cryptography and its application to provably secure key expansion, public-key distribution, and coin-tossing. In: Proc. IEEE Internat. Symp. Inform. Theor., St-Jovite, Canada, p. 91 (1983)

    Google Scholar 

  50. Brassard, G.: Brief history of quantum cryptography: A personal perspective. In: Proc. IEEE Information Theory Workshop on Theory and Practice in Information Theoretic Security, Awaji Island, Japan, pp. 19–23 (2005), http://arxiv.org/abs/quant-ph/0604072

  51. Xu, F., Qi, B., Lo, H.K.: Experimental demonstration of phase-remapping attack in a practical quantum key distribution system. New J. Phys. 12, 113026 (2010), http://arxiv.org/abs/1005.2376

    Article  Google Scholar 

  52. Liang, Y., Poor, H.V., Shamai, S.: Information Theoretic Security. Foundations and Trends in Communications and Information Theory 5, 355–580 (2008), doi:10.1561/0100000036

    Article  MATH  Google Scholar 

  53. Vincent Poor, private communications

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mingesz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mingesz, R. et al. (2013). Information Theoretic Security by the Laws of Classical Physics. In: Balas, V., Fodor, J., Várkonyi-Kóczy, A., Dombi, J., Jain, L. (eds) Soft Computing Applications. Advances in Intelligent Systems and Computing, vol 195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33941-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33941-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33940-0

  • Online ISBN: 978-3-642-33941-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics