Skip to main content

Optimization of the Binary Adder Architectures Implemented in ASICs and FPGAs

  • Conference paper
Soft Computing Applications

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 195))

Abstract

In this paper both theoretical and experimental comparative performance analysis of several binary adder architectures is performed. Also, one modified carry-bypass technique for adder performance improvement is presented. When applying simple unit-gate theoretical model for area and delay estimation it has been shown that logarithmic delay architectures (carry-lookahead and prefix adders) are the fastest but the most hardware demanding. On the other hand, the implementations in modern Virtex-6 general purpose FPGAs witness that here presented carry-bypass technique is the best tradeoff for such devices in terms of area, speed and power consumption. Presented results can be considered as a valuable resource in the selection of the most appropriate adder topology that will be used to implement a given arithmetic operation in a specified technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fang, C., Huang, C., Wang, J., Yeh, C.: Fast and compact dynamic ripple carry adder design. In: IEEE Asia-Pacific Conf. on ASIC, pp. 25–28 (2002)

    Google Scholar 

  2. Bedrij, O.: Carry-select adder. IRE Trans. Electron. Comput. 11, 340–346 (1962)

    Article  Google Scholar 

  3. Alioto, M., Palumbo, G.: Optimized design of carry-bypass adders. In: European Conf. on Circuit Theory and Design, pp. 245–248 (2001)

    Google Scholar 

  4. Chen, J.: Parallel-prefix structures for binary and modulo {2n-1,2n,2n+1} adders. PhD thesis, Oklahoma State University (2008)

    Google Scholar 

  5. Zimmermann, R.: Binary adder architectures for cell-based VLSI and their synthesis. PhD thesis, Swiss Federal Institute of Technology (1997)

    Google Scholar 

  6. Tyagi, A.: A reduced area scheme for carry-select adders. IEEE Trans. Comput. 42, 1162–1170 (1993)

    Article  Google Scholar 

  7. Xilinx Inc., Virtex-6 FPGA data sheet: DC and Switching Characteristics, v3.4 edition (2012)

    Google Scholar 

  8. Jose, B., Radhakrishnan, D.: Delay optimized redundant binary adders. In: Int. Conf. on Electronics, Circuits and Systems, pp. 514–517 (2006)

    Google Scholar 

  9. Shams, A., Darwish, T., Bayoumi, M.: Performance analysis of low-power 1-bit CMOS full adder cells. IEEE Trans. on VLSI Systems. 10, 20–29 (2002)

    Article  Google Scholar 

  10. Chang, C., Gu, J., Zhang, M.: A Review of 0.18 /spl mu/ m full adder performances for tree structured arithmetic circuits. IEEE Trans. on VLSI Systems 13, 686–695 (2005)

    Article  Google Scholar 

  11. Alioto, M., Cataldo, G.D., Palumbo, G.: Mixed full adder topologies for high-performance low-power arithmetic circuits. Microelectronics Journal 38, 130–139 (2007)

    Article  Google Scholar 

  12. Amelifard, B., Fallah, F., Pedram, M.: Closing the gap between carry select adder and ripple carry adder: a new class of low-power high performance adders. In: Int. Symp. on Quality of Electronic Design, pp. 148–152 (2005)

    Google Scholar 

  13. Knowles, S.: A family of adders. In: 15th IEEE Symp. on Computer Arithmetic, pp. 277–281 (2001)

    Google Scholar 

  14. Kharbash, F.: Redundant adder architectures, PhD Thesis, University of Missouri (2011)

    Google Scholar 

  15. Patil, D., Azizi, O., Horowitz, M., Ho, R.: Robust energy-efficient adder Topologies. In: 18th IEEE Symp. on Computer Arithmetic, pp. 16–28 (2007)

    Google Scholar 

  16. Shanzen, X., Yu, W.: FPGA adders: performance evaluation and optimal design. IEEE Design&Test of Computers 15, 24–29 (1998)

    Article  Google Scholar 

  17. Dinechin, F., Nguyen, H., Pasca, B.: Pipelined FPGA adders. In: Int. Conf. on Field Programmable Logic, pp. 422–427 (2010)

    Google Scholar 

  18. Nguyen, H., Pasca, B., Preusser, T.: FPGA-specific arithmetic optimizations of short-latency adders. In: Int. Conf. on Field Programmable Logic, pp. 232–237 (2011)

    Google Scholar 

  19. Oklobdzija, V., Barnes, E.: Some optimal schemes for ALU implementation in VLSI technology. In: Proc. of the 7th Symposium on Comp. Arith., pp. 2–8 (1985)

    Google Scholar 

  20. Sklansky, J.: Conditional sum addition logic. IRE Trans. on Electronic Computers 9, 226–231 (1960)

    Article  MathSciNet  Google Scholar 

  21. Jadhov, S.: Advanced computer arithmetic and computing. Technical Publications Pune (2009)

    Google Scholar 

  22. XPower Analyzer tutorial, ftp://ftp.xilinx.com/pub/documentation/tutorials/xpowerfpgatutorial.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojan Jovanović .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jovanović, B., Jevtić, M. (2013). Optimization of the Binary Adder Architectures Implemented in ASICs and FPGAs. In: Balas, V., Fodor, J., Várkonyi-Kóczy, A., Dombi, J., Jain, L. (eds) Soft Computing Applications. Advances in Intelligent Systems and Computing, vol 195. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33941-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33941-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33940-0

  • Online ISBN: 978-3-642-33941-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics