Skip to main content

Part of the book series: Nonlinear Physical Science ((NPS))

  • 2445 Accesses

Abstract

There exist two kinds of motion in classical physics: the deterministic motion with smooth trajectories obeying Newtonian law and the stochastic one with highly irregular broken trajectories described in terms of random processes theory. An ocular demonstration of the latter processes gives us Brownian motion. This chapter is devoted to stochastic processes. For simplicity, we will mainly focus on the one-dimensional case, but most of statements have higher-dimensional analogues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdul-Hamid H. and Nolan J.P., 1998, Multivariate stable densities as functions of one dimensional projections, J. Multivar. Anal. 67, 80–89.

    Google Scholar 

  • Alexander S. and Orbach R., 1982, Density of states on fractals: fractons, J. Phys. Lett., Paris 43, L625–L631.

    Google Scholar 

  • Araujo A. and Giné E., 1980, The Central Limit Theorem for Real and Banach Valued Random Variables, Wiley, New York.

    Google Scholar 

  • Arkhincheev V.E. and Baskin E.M., 1991, Anomalous diffusion and drift in the comb model of percolation clusters, Zh. Exper. Teor. Fiziki 100, 292–300 (in Russian).

    Google Scholar 

  • Banavar J.R., Willemsen J.F., 1984, Probability density for diffusion on fractals, Phys. Rev. B 30, 6778–6779.

    Google Scholar 

  • Barenblatt G.I., 1978, Similarity, Scaling, Intermediate Asymptotics, Gidrometeoizdat, Moscow (in Russian).

    Google Scholar 

  • Barenblatt G.I., 1996, Scaling, Self-similarity, and Intermediate Asymptotics, Cambridge University Press, New York.

    Google Scholar 

  • Barkai E., Fleurov V., and Klafter J., 2000, One-dimensional stochastic Lévy-Lorentz gas, Phys. Rev. E 61, 1164–1169.

    Google Scholar 

  • Barnes J.A. and Allan D.W., 1996, A statistical model of flicker noise, Proc. IEEE 54, 176–178.

    Google Scholar 

  • Batchelor G.K., 1953, The Theory of Homogeneous Turbulence, Cambridge University Press, Cambridge.

    Google Scholar 

  • Ben-Avraham D. and Havlin S., 2000, Diffusion and Reactions in Fractals and Disordered Systems, Cambridge University Press, Cambridge.

    Google Scholar 

  • Bertoin J., 1996, Lévy processes, Cambridge University Press, Cambridge.

    Google Scholar 

  • Blavatska V. and Janke W., 2009, Walking on fractals: diffusion and self-avoiding walks on percolation clusters, J. Phys. A: Math. Theor. 42, 015001.

    Google Scholar 

  • Botet R. and Ploszajczak M., 2002, Universal Fluctuations: The Phenomenology of Hadronic Matter, World Scientific, Singapore.

    Google Scholar 

  • Bouchaud J.P. and Georges A., 1990, Anomalous diffusion in disordered media: Statistical mechanics, models, and physical applications, Physics Reports 195, 127–293.

    Google Scholar 

  • Broadbent S.R. and Hammersley J.A., 1957, Percolation processes I. Crystals and mazes, Proc. Cambridge Philos. Soc. 53, 629–641.

    Google Scholar 

  • Chukbar K.V., 1995, Stochastical transport and fractional derivatives, Zh. Exp. Teor. Fiz. 108, 1875–1884 (in Russian).

    Google Scholar 

  • Compte A., 1996, Stochastic foundations of fractional dynamics, Phys. Rev. E 53, 4191–4193.

    Google Scholar 

  • Compte A., Jou D., and Katayama Y., 1997, Anomalous diffusion in linear shear flows, J. Phys. A: Math. Gen. 30, 1023–1030.

    Google Scholar 

  • Cox D.R., 1967, Renewal Theory, 2nd ed., Methuen, London.

    Google Scholar 

  • Dubkov A.A., Spagnolo B., and Uchaikin V.V., 2008, Lévy-flight superdiffusion: An introduction, Intern. J. Bifurcation and Chaos 18, 2649–2672.

    Google Scholar 

  • El-Wakil S.A. and Zahran M.A., 1999, Fractional integral representation of master equation, Chaos, Solitons & Fractals 10, 1545–1548.

    Google Scholar 

  • Fa K.S. and Lenzi E.K., 2003, Power law diffusion coefficient and amomalous diffusion: Analysis of solutions and first passage time, Phys. Rev. E 67, 0611105.

    Google Scholar 

  • Fa K.S. and Lenzi E.K., 2005a, Anomalous diffusion, solutions, and first passage time: Influence of diffusion coefficient, Phys. Rev. E 71, 012101.

    Google Scholar 

  • Fa K.S. and Lenzi E.K., 2005b, Exact solution of the Fokker-Planck equation for a broad class of diffusion coefficients, Phys. Rev. E 72, 020101(R).

    Google Scholar 

  • Feller W., 1971, An Introduction to Probability Theory and its Applications, Vol. 2, Wiley, New York.

    Google Scholar 

  • Giona M. and Roman H.E., 1992, Fractional diffusion equation on fractals: one-dimensional case and asympthotic behaviour, J. Phys. A: Math. Gen. 25, 2093–2105.

    Google Scholar 

  • Gnedenko B.V. and Kolmogorov A.N., 1954, Limit Distributions for Sums of Independent Random Variables, Addison-Wesley, Cambridge.

    Google Scholar 

  • Gorenflo R. and Mainardi F., 2003, Fractional diffusion processes: probability distributions and continuous time random walk In: Processes with Long Range Correlations, eds. Rangarajan G. and Ding M., Springer, Berlin, 148–166.

    Google Scholar 

  • Gorenflo R., Mainardi F., Moretti D., Pagnini G., and Paradisi P., 2002, Discrete random walk models for space-time fractional diffusion, Chem. Phys. 284, 521–574.

    Google Scholar 

  • Hentschel H.G.E. and Procaccia I., 1984, Relative diffusion in turbulent media: The fractal dimension of clouds, Phys. Rev. A 29, 1461–1470.

    Google Scholar 

  • Jumarie G., 2001, Fractional master equation: non-standard analysis and Liouville-Riemann derivative, Chaos, Solitons & Fractals 12, 2577–2587.

    Google Scholar 

  • Kilbas A.A., Srivastava H.M., and Trujillo J.J., 2006, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam.

    Google Scholar 

  • Klafter J., Blumen A., and Shlesinger M.F., 1987, Stochastic pathways to anomalous diffusion, Phys. Rev. A 35, 3081–3085.

    Google Scholar 

  • Klafter J., Zumofen G., and Blumen A., 1991, On the propagator of Sierpinski gaskets, J. Phys. A 24, 4835–4842.

    Google Scholar 

  • Laskin N., 2003, Fractional Poisson process, Communications in Nonlinear Science and Numerical Simulation 8, 201–213.

    Google Scholar 

  • Lévy P., 1965, Processes stochastiques et mouvement brownien, 2nd ed., Gauthier-Villars, Paris.

    Google Scholar 

  • Lorentz H.A., 1905, The motion of electron in metallic bodies, Proc. Amsterdam Academic 7, 438–441.

    Google Scholar 

  • Lukacs E., 1960, Characteristic functions, Griffin, London.

    Google Scholar 

  • Magre O. and Guglielmi M., 1997, Modelling and analysis of fractional Brownian motions, Chaos, Solitons and Fractals 8, 377–388.

    Google Scholar 

  • Mandelbrot B.B. and Van Ness J.W., 1968, Fractional Brownian motions, fractional noises and applications, The Siam Review 10, 422–437.

    Google Scholar 

  • Mantegna R.N. and Stanley H.E., 1994, Stochastic processes with ultraslow convergence to a Gaussian: the truncated Lévy flight, Phys. Rev. E 73, 2946–2949.

    Google Scholar 

  • Meerschaert M.M., Benson D.A., Becker-Kern P., and Scheffler H.-P., 2003, Governing equations and solutions of anomalous random walk limits, Phys. Rev. E 66;, 060102(R).

    Google Scholar 

  • Meerschaert M.M., Scheffler H.P., 2004 Limit theorems for continuous time random walks with infinite mean waiting times, J. Appl. Probab. 41(3), 623–638.

    Google Scholar 

  • Metzler R. and Klafter J., 2000, The random walks guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339, 1–77.

    Google Scholar 

  • Montroll E.W. and Weiss G.H., 1965, Random Walks on lattices II, J. Math. Phys. 6, In: Fluctuation Phenomena, eds. Montroll E.W. and Lebowitz J.L., North-Holland, Amsterdam, 61–206.

    Google Scholar 

  • Montroll E.W. and West B.J., 1976, On an enriched collection of stochastic processes, In: Nonequilibrium Phenomena II, eds. Lebowitz J.L. and Montroll E.W., North-Holland, Amsterdam, 61–175.

    Google Scholar 

  • Nolan J.P., 1998, Multivariate stable distributions: approximation, estimation, simulation and identification, In: A Practical Guide to Heavy Tails, eds. Adler R.J., Feldman R.E., and Taqqu M.S., 509–526. Birkhauser, Boston.

    Google Scholar 

  • Nigmatullin R.R., 1986, The realization of the generalized transfer equation in a medium with fractal geometry, Phys. Stat. Sol. B 133, 425–430.

    Google Scholar 

  • Okubo A., 1962, A review of theoretical models of turbulent diffusion in the sea, Journ. Oceanogr. Soc. Japan 20, 286–320.

    Google Scholar 

  • O’Shaughnessy B. and Procaccia I., 1985, Analytical solutions for diffusion on fractal objects, Phys. Rev. Lett. 54, 455–458.

    Google Scholar 

  • Repin O.N. and Saichev A.I., 2000, Fractional Poisson law, Radiophysics and Quantum Electronics 43,738–741.

    Google Scholar 

  • Richardson L.F., 1926, Atmospheric diffusion shown on a distance-neighbour graph, Proc. Roy. Soc. London A 110, 709–737.

    Google Scholar 

  • Roman H.E. and Giona M., 1992, Fractional diffusion equation on fractals: three-dimensional case and scattering function, J. Phys. A: Math. Gen. 25, 2107–2117.

    Google Scholar 

  • Saichev A.I. and Zaslavsky G.M., 1997, Fractional kinetic equations: solutions and applications, Chaos 7, 753–764.

    Google Scholar 

  • Samko S.G., Kilbas A.A., and Marichev O.I., 1993, Fractional Integrals and Derivatives — Theory and Applications, Gordon and Breach, New York.

    Google Scholar 

  • Samorodnitzky G. and Taqqu M.S., 1994, Stable Non-Gaussian Random Processes. Stochastic Models with Infinite Variance, Chapman and Hall, New York and London.

    Google Scholar 

  • Scalas E., Gorenflo R., and Mainardi F., 2004, Uncoupled continuous-time random walks: solution and limiting behavior of the master equation, Phys. Rev. E 69, 011107.

    Google Scholar 

  • Shlesinger M., Klafter J., and Wong Y. M., 1982, Random walks with infinite spatial and temporal moments, J. Stat. Phys. 27, 499–512.

    Google Scholar 

  • Uchaikin V.V., 1998, Anomalous transport equations and their application to fractal walking, Physica A 255, 65–92.

    Google Scholar 

  • Uchaikin V.V., 1998a, Anomalous diffusion of particles with a finite free-motion velocity, Theor. and Math. Phys. 115, 496–501.

    Google Scholar 

  • Uchaikin V.V., 1998b, Anomalous transport of particles with a finite velocity and asymptotic fractality, J. Techn. Phys. 68, 138–139 (in Russian).

    Google Scholar 

  • Uchaikin V.V., 1998c, Renewal theory for anomalous transport processes, J. Math. Sciences 92, 4085–4096.

    Google Scholar 

  • Uchaikin V.V., 1999, Subdiffusion and stable laws, Journal of Experimental and Theoretical Physics 88, 1155–1163.

    Google Scholar 

  • Uchaikin V.V., 2000, Montroll-Weiss’ problem, fractional equations, and stable distributions, Intern. J. Theor. Physics 39, 2087–2105.

    Google Scholar 

  • Uchaikin V.V., 2000a, Exact solution to the problem of one-dimensional random walk of a particle with a finite velocity of free motion, J. Math. Sciences 99, 1332–1340.

    Google Scholar 

  • Uchaikin V.V., 2001, Anomalous diffusion on a one-dimensional fractal Lorentz gas with trapping atoms, In: Emergent Nature. Patterns, Growth and Scaling in the Sciences, ed. M. Novak, World Scientific, New Jersey, 411–421.

    Google Scholar 

  • Uchaikin V.V., 2002, Multidimensional symmetric anomalous diffusion, Chem. Phys. 284, 507–520.

    Google Scholar 

  • Uchaikin V.V., 2002a, Subordinated Lévy-Feldheim motion as a model of anomalous self-similar diffusion, Physica A 305, 205–208.

    Google Scholar 

  • Uchaikin V.V., 2003, Self-similar anomalous diffusion and Lévy-stable laws, Physics-Uspekhi 46, 821–849.

    Google Scholar 

  • Uchaikin V.V. 2003a, Anomalous diffusion and fractional stable distributions, J. Exper. and Theor. Phys. 97, 810–825.

    Google Scholar 

  • Uchaikin V.V. 2004, Fractal walk and walk on fractals, Technical Pysics, 49, 929–932.

    Google Scholar 

  • Uchaikin V.V. and Sibatov R.T., 2004, Random walk on a one-dimensional stochastic fractal set of trapping atoms, Review of Applied and Industrial Mathematics, Vol. 11, No. 1, 148–149 (in Russian).

    Google Scholar 

  • Uchaikin V.V. and Sibatov R.T., 2004a, Asymmetrical fractal walk with a finite velocity of free motion, Review of Applied and Industrial Mathematics, Vol. 11, No. 4, 946–947 (in Russian).

    Google Scholar 

  • Uchaikin V.V. and Sibatov R.T., 2004b, Lévy walks on a one-dimensional fractal Lorentz gas with trapping atoms, Res. Rep. 4/04, Nottingham Trent University, Nottingham.

    Google Scholar 

  • Uchaikin V.V. and Yarovikova I.V., 2003, Numerical solution of time-dependent problem of anomalous finite velocity diffusion by the moments method, Comp. Math. and Math. Phys. 43, 1478–1490.

    Google Scholar 

  • Uchaikin V.V., Cahoy D.O., and Sibatov R.T., 2008, Fractional processes: from Poisson to branching one, Int. J. of Bifurcation and Chaos 18, 2717–2725.

    Google Scholar 

  • Uchaikin V.V. and Zolotarev V.M., 1999, Chance and Stability. Stable Distributions and their Applications, VSP, Utrecht, Netherlands.

    Google Scholar 

  • Van den Broeck, 1997, From Stratonovich calculus to noise induced phase transition, In: Stochastic Dynamics, eds. Schimansky-Geier L. and Poeschel T., Springer, Berlin and Heidelberg.

    Google Scholar 

  • Wang X.T. and Wen Z.X., 2003, Poisson fractional processes, Chaos, Solitons and Fractals 18, 169–177.

    Google Scholar 

  • Wang X.T., Wen Z.X., and Zhang S.Y., 2006, Fractional Poisson process (II), Chaos, Solitons & Fractals 28, 143–147.

    Google Scholar 

  • West B.J., Grigolini P., Metzler. R., and Nonnenmacher T.F., 1997, Fractional diffusion and Lévy stable processes, Phys. Rev. E 55, 99–106.

    Google Scholar 

  • Zaslavsky G.M., 2005, Hamiltonian Chaos and Fractional Dynamics, Oxford University Press, Oxford.

    Google Scholar 

  • Zeldovich Ya.B. and Sokolov D.D., 1985, Fractals, Similarity, Intermediate Asymptotics, Physics Uspekhi 146, 494–506.

    Google Scholar 

  • Zolotarev V.M., 1986, One-dimensional Stable Distributions, Amer. Math. Soc., Providence, Rhode Island.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Uchaikin, V.V. (2013). Stochasticity. In: Fractional Derivatives for Physicists and Engineers. Nonlinear Physical Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33911-0_3

Download citation

Publish with us

Policies and ethics