Skip to main content

Part of the book series: Nonlinear Physical Science ((NPS))

  • 2449 Accesses

Abstract

Volterra heredity principles could form a basis for intensive development of a new direction in physics. Unfortunately they didn’t: those times physicists went in for the revolutionary fundamental stream — relativity theory, quantum mechanics, nuclear physics, and elementary particles (gold age of physics! — will it ever recur?). However, last decades are characterized by growing concentration of skills in the direction of research of complex systems and processes which mostly can be described only at phenomenological level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alder B.J. and Wainwright T.E., 1967, Velocity autocorrelations for hard spheres, Phys, Rev. Lett. 18, 988–990.

    Google Scholar 

  • Alder BJ. and Wainwright T.E., 1969, Enhancement of diffusion by vortex-like motion of classical hard spheres, J, Phys. Soc. Japan (Suppl.) 25, 267–269.

    Google Scholar 

  • Alexander S., 1986, Fractons, Physica 140 A, 397–404.

    Google Scholar 

  • Antonietti M., Foelsch K.J., Sillescu H., and Pakula T., 1989, Micronetworks by end-linking of polystyrene. 2. Dynamic mechanical behavior and diffusion experiments in the bulk, Macro-molecules 22, 2812–2817.

    Google Scholar 

  • Armstrong J.W., Rickett B.J., and Spangler S. R., 1995, Electron density power spectrum in the local interstellar medium, Astrophys. J. 443, 209–221.

    Google Scholar 

  • Baertschiger T., Joyce M., and Labini F.S., 2002, Power-law correlations and discreteness in cosmological TV-body simulations, The Astrophysical Journal 581, L63–L66

    Google Scholar 

  • Bagley R.L. and Torvik P.J., 1983, A theoretical basis for the application of fractional calculus, J. Rheology 27, 201–210.

    Google Scholar 

  • Balescu R., 1975, Equilibrium and Nonequilibrium Statistical Mechanics, Wiley Intersci, Pub., New York.

    Google Scholar 

  • Bardou F., Bouchaud J.-P., Aspect A., and Cohen-Tannoudji C, 2002, Lévy Statistic and Laser Cooling. How Rare Events Bring Atoms to Rest, Cambridge University Press, Cambridge.

    Google Scholar 

  • Bershadskii A., Kit E., and Tsinober A., 1993, Self-organization and fractal dynamics in turbulence, Physica A 199, 453–475.

    Google Scholar 

  • Binder K. and Stauffer D., 1984, Reactions in disordered media modelled by fractals, In: Applications of the Monte Carlo Method in Statistical Physics, ed. K. Binder, Springer, Berlin.

    Google Scholar 

  • Blumen A., Klafter J., and Zumofen G., 1986, Reaction in disordered media modelled by fractals, In: Fractals in Physics, eds. Pietronero L. and Tosatti E., North-Holland, Amsterdam, 399–412.

    Google Scholar 

  • Borgani S., 1995, Scaling in the Universe, Phys, Rep. 251, 1–152.

    Google Scholar 

  • Burroughs S.M. and Tebbens S.F., 2005, Power law scaling and probabilistic forecasting of tsunami runup heights, Pure Appl, Geophys. 162, 331–342.

    Google Scholar 

  • Chen W., and Holm S., 2004 2005, Lévy stable distribution and [0, 2] power dependence of the absorption coefficient on the frequency in various lossy media, Chin, Phys. Lett. 22, 2601–2603.

    Google Scholar 

  • Chen K. and Bak P., 2002, Forest fires and the structure of the universe, Physica A 306, 15–24.

    Google Scholar 

  • Cho J., Lazarian A., and Vishniac E.T., 2002, MHD Turbulence: Scaling Laws and MHD Turbulence: Scaling Laws and Astrophysical Implications, arXiv: astroph/0205286v1.

    Google Scholar 

  • Cole K.S. and Cole R.H.J., 1941, Dispersion and absorption in dielectrics, Chem. Phys. 9, 341–350.

    Google Scholar 

  • Curie J., 1889a, Recherches sur le pouvoir inducteur specifique et la conductibilite des corps cristallises, Ann. Chim. Phys. 17, 385–434.

    Google Scholar 

  • Curie J., 1889b, Recherches sur la conductibilite des corps cristallises, Ann. Chim. Phys. 18, 203–269.

    Google Scholar 

  • Davidson D. and Cole R., 1951, Dielectric relaxation in glycerol, propylene glycol, and n-propanol, J, Chem. Phys. 19, 1484–1490.

    Google Scholar 

  • Davidson P. A., 2004, Turbulence — An Introduction for Scientists and Engineers, Oxford University Press, Oxford.

    Google Scholar 

  • Debye P., 1912, Some results of kinetic theory of isolators, Preliminary announcement, Phys. Z. 13, 97–100.

    Google Scholar 

  • De Gennes P.-G., 1979, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca.

    Google Scholar 

  • Doi M. and Edwards S.F., 1995, The Theory of Polymer Dynamics, Clarendon Press, Oxford.

    Google Scholar 

  • Dorfman J.R. and Cohen E.G.D., 1970, Velocity correlation functions in two and three dimensions, Phys. Rev. Lett. 25 1257–1260.

    Google Scholar 

  • Efros A.L. and Rosen M., 1997, Random telegraph signal in the photoluminescence intensity of a single quantum dot, Phys. Rev. Lett. 78, 1110–1113.

    Google Scholar 

  • Family F. and Landau D.P., 1984, Kinetics of Aggregation and Gelation, North-Holland, Amsterdam.

    Google Scholar 

  • Feller W., 1971, An Introduction to Probability Theory and its Applications, Vol. II, Second Edition, Wiley Intersci. Pub., New York.

    Google Scholar 

  • Fermi E., 1949, On the origin of the cosmic radiation, Phys. Rev. 75, 1169–1174.

    Google Scholar 

  • Frisch U., 1995, Turbulence: the Legacy of A.N. Kolmogorov, Cambridge University Press, New York.

    Google Scholar 

  • Geist E.L. and Parsons T., 2008, Distribution of tsunami interevent times, Geophysical Research Letters 35, (1–6).

    Google Scholar 

  • Gelfand I.M. and Shilov G.E., 1964, Generalized Functions, Vol. 1, Academic Press, New York.

    Google Scholar 

  • Gemant A., 1936, A method of analyzing experimental results obtained from elasto-viscouse bodies, Physics 7, 311–317.

    Google Scholar 

  • Gifford F. A., 1983, Atmospheric diffusion in the mesoscale range: the evidence of recent plume width observations, Sixth Symposium on Turbulence and Diffusion, Boston, 300–304.

    Google Scholar 

  • Goldstein M.L., Roberts D.A., and Matthaeus W.H., 1995, Magnetohydrodynamic turbulence in the solar wind, Annu. Rev. Astron. As trophys. 33, 283–325.

    Google Scholar 

  • Guernsey R.L., 1962, Relaxation time for two-particle correlation functions in a plasma, Phys. Fluids 5, 322–331.

    Google Scholar 

  • Haggerty R., Wondzell S.M., and Johnson M.A., 2002, Power-law residence time distribution in the hyporheic zone of a 2nd-order mountain stream, Geophys, Research Letters 29, 18.1–18.4.

    Google Scholar 

  • Harper W. R., 1967, Contact and Frictional Electrification, Oxford Univ. Press, Oxford.

    Google Scholar 

  • Havriliak S. and Negami S., 1966, A complex plane analysis of α-dispersions in some polymer systems, J. Polym. Sci. 14, 99–117.

    Google Scholar 

  • Helmstetter A. and Sornette D., 2002, Diffusion of epicenters of earthquake aftershocks, Omoris law, and generalized continuous-time random walk models, Phys. Rev. E 66,(1–24).

    Google Scholar 

  • Hentschel H.G.E. and Procaccia I., 1983, Fractal nature of turbulence as manifested in turbulent diffusion, Phys. Rev. A 27, 1266–1269.

    Google Scholar 

  • Holtzberg F., Tholence J.L., and Tournier R., 1977, Remanent magnetization of spin glasses and the dipolar coupling, In: Amorphous Magnetism II. eds. Lévy R.A. and Hasegava R., Plenum Press, New York, 155–167.

    Google Scholar 

  • Horbury T.S., 1999, Waves and turbulence in the solar wind — an overview, In: Plasma Turbulence and Energetic Particles, eds. Ostrowski M., Schlickeiser R., and Krakow, Poland, 115–134.

    Google Scholar 

  • Horbury T.S. and Balogh A., 1997, Structure function measurements of the intermittent MHD turbulent cascade, Nonlin. Proc. Geophys. 4, 185–199.

    Google Scholar 

  • Iovane G., Laserra E., and Tortoriello F.S., 2004, Stochastic self-similar and fractal universe, Chaos, Solitons & Fractals 20, 415–426.

    Google Scholar 

  • Jackson J.D., 1975, Classical Electrodynamics, 2nd ed., Wiley, New York.

    Google Scholar 

  • Jonscher A.K., 1983, Dielectric Relaxation in Solids, Chelsea Dielectric Press, London.

    Google Scholar 

  • Jonscher A.K., 1996, Universal Relaxation Law, Chelsea Dielectric Press, London.

    Google Scholar 

  • Jung Y., Barkai E., and Silbey R., 2002, Lineshape theory and photon counting statistics for blinking quantum dots: a Lévy walk process, Chemical Physics 284, 181–194.

    Google Scholar 

  • Jonscher A.k., Jurlewich A., and Weron K., 2003, Stochastic schemes of dielectric relaxation in correlated-cluster systems, Contemporary Physics 44, 329–339.

    Google Scholar 

  • Kagan Y.Y., 2002, Scismic moment distribution revisited: I. Statistical results, Geophys. J. Int. 148, 520–541.

    Google Scholar 

  • Kagan Y.Y. and Knopoff L., 1987, Statistical short-term earthquake prediction, Science 236, 1563–1567.

    Google Scholar 

  • Kohlrausch R., 1854, Theorie des Elektrischen Rueckstandes in der Leidener Flasche, Annalen der Physik und Chemie (Poggendorf) 56, 179–214.

    Google Scholar 

  • Kolmogorov A.N., 1941a, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Rep. USSR Acad. Sci. 30, 299–303(in Russian).

    Google Scholar 

  • Kolmogorov A.N., 1941b, Dissipation of energy in locally isotropic turbulence, Rep. USSR Acad. Sci. 32, 16–18 (in Russian).

    Google Scholar 

  • Kopelman R., 1986, Fractal-like exciton dynamics: geometric and energy disorder, Fractals in Physics, eds. Pietronero L. and Tosatti E., North-Holland, Amsterdam, 524–527.

    Google Scholar 

  • Kuno M., Fromm D.P., Hamann H.F., Gallagher A., and Nesbitt D.J., 2001, “On”/“off” fluorescence intermittency of single semiconductor quantum dots, J. Chem. Phys. 115, 1028–1040.

    Google Scholar 

  • Landau L. and Lifshitz E., 1970, Hydrodynamics, Pergamon Press, Oxford and New York.

    Google Scholar 

  • Loytsianskii L.G., 1973, Mechanics of Fluids and a Gas, Nauka, Moscow (in Russian).

    Google Scholar 

  • Madan A. and Shaw M.P., 1988, The Physics and Application of Amorphous Semiconductors, Acad. Press., Boston.

    Google Scholar 

  • Mandelbrot B., 1982, The Fractal Geometry of Nature, Freeman, New York.

    Google Scholar 

  • Mani S., Winter H.H., Silverstein M., and Narkis M., 1989, Power law relaxation in an interpenetrating polymer network, Colloid Polym. Sci. 267, 1002–1006.

    Google Scholar 

  • Molisch A.F. and Oehry B.P., 1998, Radiation Trapping in Atomic Vapours, Oxford University Press, Oxford.

    Google Scholar 

  • Monin A.S. and Yaglom A.M., 1973, Statistical Fluid Mechanics, Vol. 1. The MIT Press, Boston.

    Google Scholar 

  • Monin, A.S. and Yaglom A.M., 1975, Statistical Fluid Mechanics, Vol. 2. The MIT Press, Boston.

    Google Scholar 

  • Montroll E.W. and Shlesinger M.F., 1983, Maximum entropy formalism, fractals, scaling and 1/f noise: a tale of tails, J. Stat. Phys. 32, 209–230.

    Google Scholar 

  • Nutting P.G., 1921, A new general law of deformation, J. Franklin Inst. 191, 679–685.

    Google Scholar 

  • Nutting P.G., 1943, A general stress-strain-time formula, J. Franklin Inst. 235, 513–524.

    Google Scholar 

  • Nutting P.G., 1946, Deformation in relation to time, pressure and temperature, J. Franklin Inst. 242, 449–458.

    Google Scholar 

  • Okubo A., 1971, Oceanic diffusion diagrams, Deep-Sea Research 18, 789–806.

    Google Scholar 

  • Osad’ko I.S., 2004, Power-law statistics of intermittent photoluminescence in single semiconductor nanocrystals, JETP Letters 79, 416–419.

    Google Scholar 

  • Osad’ko I.S., 2006, Blinking fluorescence of single molecules and semiconductor nanocrystals, Physics-Uspekhi 49, 19–51.

    Google Scholar 

  • Otsuki M. and Hayakawa H., 2009, Critical behaviors of sheared frictionless granular materials near the jamming transition, Phys, Rev. E 80, 011308.

    Google Scholar 

  • Otsuki M. and Hayakawa H., 2010, Unified description of long-time tails and long-range correlation functions for sheared granular liquids, EPJ, arXiv: 0907.4462v2 [cond-mat.stat-mech.].

    Google Scholar 

  • Paar V, Pavin N., Rubvcic A., and Rubvcić J, 2002, Power laws and fractal behavior in nuclear stability, atomic weights and molecular weights, Chaos, Solitons & Fractals 14, 901–916.

    Google Scholar 

  • Peebles P.J.E., 1980, The Large Structure of the Universe, Princeton University Press, Princeton.

    Google Scholar 

  • Peitgen H.-O. and Richter P.H., 1986, The Beauty of Fractals, Springer, Heidelberg.

    Google Scholar 

  • Peliti L., 1986, Random walk with memory, In: Fractals in Physics, eds. Pietronero L. and Tosatti E., North-Holland, Amsterdam.

    Google Scholar 

  • Rabotnov Yu.N., 1948, Equilibrium of an elastic medium with after effect, Prikl. Matern, i Mekh. 12, 81–91 (in Russian).

    Google Scholar 

  • Rabotnov Yu.N., 1977, Elements of Hereditary Solid Mechanics, Nauka, Moscow (in Russian).

    Google Scholar 

  • Räcz Z., 1986, In: Fractals in Physics, eds. Pietronero L. and Tosatti E., North-Holland, Amsterdam, 309–312.

    Google Scholar 

  • Richardson L.F., 1926, Atmospheric diffusion on a distance-neighbor graph, Proc. Roy. Soc. London A 110, 709–737.

    Google Scholar 

  • Rouse P.E, 1953, A theory of the linear viscoelastic properties of dilute solutions of coiling polymers, J, Chem. Phys. 21, 1272–1280.

    Google Scholar 

  • Sakharov A., 1965, An initial stage of the Universe expansion and the origin of nonhomogeneous distribution of matter, Zh, Exper. Teor. Fiz. 49, 345–358 (in Russian).

    Google Scholar 

  • Safronov V.S., 1969, Evolution of an ante-planet cloud and formation of the Earth and planets, Nauka, Moscow.

    Google Scholar 

  • Scher H., and Montroll E.W., 1975, Anomalous transit-time dispersion in amorphous solids, Phys. Rev. B 12, 2455–2477.

    Google Scholar 

  • Schiessel H., Friedrich C, and Blumen A., 2000, Applications to problems in polymer physics and rheology, In: Applications of Fractional Calculus in Physics, ed. Hilfer R., World Scientific, Singapore, 331–376.

    Google Scholar 

  • Schroeder M., 1992, Fractal Chaos, Power Laws, Freeman, New York.

    Google Scholar 

  • Sessler G.M., 1980, Electrets, Springer, Berlin.

    Google Scholar 

  • Shimizu K.T. Neuhauser R.G. and Leatherdale C.A., 2001, SA Empedocles, WK Woo, and MG Bawendi, Phys. Rev. B 63, 205–316.

    Google Scholar 

  • Sljoskin N.A., 1955, Dynamics of Viscous Incompressible Liquid, Gosteckizdat, Moscow (in Russian).

    Google Scholar 

  • Slonimsky G.L., 1961, On the laws of deformation of visco-elastic polymeric bodies, Dokl. Akad. Nauk SSSR 140, 343–346 (in Russian).

    Google Scholar 

  • Slonimsky G.L., 1967, Laws of mechanical relaxation processes in polymers, J. Polymer Science, Part C 16, 1667–1672.

    Google Scholar 

  • Sornette D., 2006, Critical Phenomena in Natural Sciences, Springer, Berlin.

    Google Scholar 

  • Spangler S.R. and Gwinn C.R., 1990, Evidence for an inner scale to the density turbulence in the interstellar medium. Astrophys. J. 353, L29.

    Google Scholar 

  • Tang J., Marcus R.A., 2005, Mechanisms of fluorescence blinking in semiconductor nanocrystal quantum dots, J. Chem. Phys. 123, (1–12).

    Google Scholar 

  • Taylor G.L., 1959, The present position in the theory of turbulent diffusion, Atmospheric Diffusion and Air Pollution, eds. Frenkiel F.N. and Sheppard P.A., Acad. Press, New York and London, 101–112.

    Google Scholar 

  • Todd B.D., 2005, Power-law exponents for the shear viscosity of non-Newtonian simple fluids, Phys. Rev. E 72,(1–5).

    Google Scholar 

  • Townsend A.A., 1966, The mechanism of entrainment in free turbulent flows, J. Fluid Mechanics 26, 689–715.

    Google Scholar 

  • Trubnikov B.A., 1971, Solution of the coagulation equation with a bilinear coefficient of particles sticking, Rep. USSR Acad. Sci. 196, 1316–1319.

    Google Scholar 

  • Tsallis C, 1988, Possible Generalization of Boltzmann-Gibbs Statistics, J. Stat. Phys. 52, 479–487.

    Google Scholar 

  • Tsallis C, 2004, What should a statistical mechanics satisfy to reflect nature? Physica D: Nonlinear Phenomena 193, 3–34.

    Google Scholar 

  • Tsallis C, de Souza A., and Maynard R., 1995, In: Lévy Flights and Related Topics in Physics., eds, Shlesinger M. F., Zaslavsky G. M., and Frisch U., Springer, Berlin, 269.

    Google Scholar 

  • Tsinober A., 1994, Anomalous diffusion in geophysical and laboratory turbulence, Nonlinear Processes in Geophysics 1, 80–94.

    Google Scholar 

  • Tunaley J.K.E., 1972, Conduction in a random lattice under a potential gradient, J. Appl. Phys. 43, 4783–4786.

    Google Scholar 

  • Turcotte D.L., 1986, Fractals and fragmentation, J. Geophys. Res. 91, 1921–1926.

    Google Scholar 

  • Uchaikin V.V. and Zolotarev V.M., 1999, Chance and Stability: Stable Distributions and their Applications, the Netherlands, Utrecht.

    Google Scholar 

  • Uematsu T., Svanberg C, Nydén M., and Jacobsson P., 2003, Power laws in polymer solution dynamics, Phys. Rev. E 68,(1–8).

    Google Scholar 

  • Vainstein S. and Sreenivasan K. R., 1994, Kolmogorov’s 4/5th law and intermittency in turbulence, Phys. Rev. Lett. 73, 3085–3088.

    Google Scholar 

  • von Schweidler E.R., 1907, Studien uber die anomalien im verhalten der dielectrika, Ann. Phys. Lpz. 24, 711–770.

    Google Scholar 

  • Westerlund S., 1991, Dead matter has memory! Physica Scripta 43, 174–179.

    Google Scholar 

  • Winter H.H. and Chambon F., 1986, Analysis of linear viscoelasticity of a cross linking polymer at the gel point, Journal of Rheology 30, 367–382.

    Google Scholar 

  • Witten T.A. and Sander L.M., 1981, Diffusion-limited aggregation, a kinetic critical phenomenon, Phys, Rev. Lett. 47, 1400–1403.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Uchaikin, V.V. (2013). Selfsimilarity. In: Fractional Derivatives for Physicists and Engineers. Nonlinear Physical Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33911-0_2

Download citation

Publish with us

Policies and ethics