Skip to main content

Universal OWL Axiom Enrichment for Large Knowledge Bases

  • Conference paper
Knowledge Engineering and Knowledge Management (EKAW 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7603))

Abstract

The Semantic Web has seen a rise in the availability and usage of knowledge bases over the past years, in particular in the Linked Open Data initiative. Despite this growth, there is still a lack of knowledge bases that consist of high quality schema information and instance data adhering to this schema. Several knowledge bases only consist of schema information, while others are, to a large extent, a mere collection of facts without a clear structure. The combination of rich schema and instance data would allow powerful reasoning, consistency checking, and improved querying possibilities as well as provide more generic ways to interact with the underlying data. In this article, we present a light-weight method to enrich knowledge bases accessible via SPARQL endpoints with almost all types of OWL 2 axioms. This allows to semi-automatically create schemata, which we evaluate and discuss using DBpedia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agresti, A., Coull, B.A.: Approximate is better than “exact” for interval estimation of binomial proportions. The American Statistician 52(2), 119–126 (1998)

    MathSciNet  Google Scholar 

  2. Baader, F., Ganter, B., Sattler, U., Sertkaya, B.: Completing description logic knowledge bases using formal concept analysis. In: IJCAI 2007. AAAI Press (2007)

    Google Scholar 

  3. Baader, F., Sertkaya, B., Turhan, A.-Y.: Computing the least common subsumer w.r.t. a background terminology. J. Applied Logic 5(3), 392–420 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Badea, L., Nienhuys-Cheng, S.-H.: A Refinement Operator for Description Logics. In: Cussens, J., Frisch, A.M. (eds.) ILP 2000. LNCS (LNAI), vol. 1866, pp. 40–59. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Choi, N., Song, I.-Y., Han, H.: A survey on ontology mapping. SIGMOD Record 35(3), 34–41 (2006)

    Article  Google Scholar 

  6. Cohen, W.W., Borgida, A., Hirsh, H.: Computing least common subsumers in description logics. In: AAAI 1992, pp. 754–760 (1992)

    Google Scholar 

  7. Cohen, W.W., Hirsh, H.: Learning the CLASSIC description logic: Theoretical and experimental results. In: KR 1994, pp. 121–133. Morgan Kaufmann (1994)

    Google Scholar 

  8. Esposito, F., Fanizzi, N., Iannone, L., Palmisano, I., Semeraro, G.: Knowledge-Intensive Induction of Terminologies from Metadata. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 441–455. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Fanizzi, N., d’Amato, C., Esposito, F.: DL-FOIL Concept Learning in Description Logics. In: Železný, F., Lavrač, N. (eds.) ILP 2008. LNCS (LNAI), vol. 5194, pp. 107–121. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Fleischhacker, D., Völker, J.: Inductive Learning of Disjointness Axioms. In: Meersman, R., Dillon, T., Herrero, P., Kumar, A., Reichert, M., Qing, L., Ooi, B.-C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M., Hitzler, P., Mohania, M. (eds.) OTM 2011, Part II. LNCS, vol. 7045, pp. 680–697. Springer, Heidelberg (2011), http://dx.doi.org/10.1007/978-3-642-25106-1

    Chapter  Google Scholar 

  11. Hellmann, S., Lehmann, J., Auer, S.: Learning of OWL class descriptions on very large knowledge bases. Int. J. Semantic Web Inf. Syst. 5(2), 25–48 (2009)

    Article  Google Scholar 

  12. Iannone, L., Palmisano, I.: An Algorithm Based on Counterfactuals for Concept Learning in the Semantic Web. In: Ali, M., Esposito, F. (eds.) IEA/AIE 2005. LNCS (LNAI), vol. 3533, pp. 370–379. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Iannone, L., Palmisano, I., Fanizzi, N.: An algorithm based on counterfactuals for concept learning in the semantic web. Applied Intelligence 26(2), 139–159 (2007)

    Article  Google Scholar 

  14. Lehmann, J.: Hybrid Learning of Ontology Classes. In: Perner, P. (ed.) MLDM 2007. LNCS (LNAI), vol. 4571, pp. 883–898. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Lehmann, J.: DL-Learner: learning concepts in description logics. Journal of Machine Learning Research (JMLR) 10, 2639–2642 (2009)

    MathSciNet  MATH  Google Scholar 

  16. Lehmann, J., Auer, S., Bühmann, L., Tramp, S.: Class expression learning for ontology engineering. Journal of Web Semantics 9, 71–81 (2011)

    Article  Google Scholar 

  17. Lehmann, J., Bizer, C., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.: DBpedia - a crystallization point for the web of data. Journal of Web Semantics 7(3), 154–165 (2009)

    Article  Google Scholar 

  18. Lehmann, J., Bühmann, L.: ORE - A Tool for Repairing and Enriching Knowledge Bases. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part II. LNCS, vol. 6497, pp. 177–193. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  19. Lehmann, J., Haase, C.: Ideal Downward Refinement in the \(\mathcal{EL}\) Description Logic. In: De Raedt, L. (ed.) ILP 2009. LNCS, vol. 5989, pp. 73–87. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Lehmann, J., Hitzler, P.: Foundations of Refinement Operators for Description Logics (Best Student Paper Award). In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 161–174. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Lehmann, J., Hitzler, P.: A Refinement Operator Based Learning Algorithm for the ALC Description Logic (Best Student Paper Award). In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 147–160. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Lehmann, J., Hitzler, P.: Concept learning in description logics using refinement operators. Machine Learning Journal 78(1-2), 203–250 (2010)

    Article  Google Scholar 

  23. Lisi, F.A.: Building rules on top of ontologies for the semantic web with inductive logic programming. Theory and Practice of Logic Programming 8(3), 271–300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lisi, F.A., Esposito, F.: Learning SHIQ+log rules for ontology evolution. In: SWAP 2008. CEUR Workshop Proceedings, vol. 426. CEUR-WS.org (2008)

    Google Scholar 

  25. Morsey, M., Lehmann, J., Auer, S., Stadler, C., Hellmann, S.: Dbpedia and the live extraction of structured data from wikipedia. Program: Electronic Library and Information Systems 46, 27 (2012)

    Article  Google Scholar 

  26. Nienhuys-Cheng, S.-H., de Wolf, R. (eds.): Foundations of Inductive Logic Programming. LNCS, vol. 1228. Springer, Heidelberg (1997)

    Google Scholar 

  27. Palma, R., Haase, P., Corcho, Ó., Gómez-Pérez, A.: Change representation for OWL 2 ontologies. In: Hoekstra, R., Patel-Schneider, P.F. (eds.) OWLED. CEUR Workshop Proceedings, vol. 529. CEUR-WS.org (2009)

    Google Scholar 

  28. Rudolph, S.: Exploring Relational Structures Via FLE. In: Wolff, K.E., Pfeiffer, H.D., Delugach, H.S. (eds.) ICCS 2004. LNCS (LNAI), vol. 3127, pp. 196–212. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  29. Sertkaya, B.: Ontocom P system description. In: Grau, B.C., Horrocks, I., Motik, B., Sattler, U. (eds.) Proceedings of the 22nd International Workshop on Description Logics (DL 2009), Oxford, UK. CEUR Workshop Proceedings, vol. 477, CEUR-WS.org (2009)

    Google Scholar 

  30. Shvaiko, P., Euzenat, J.: Ten challenges for ontology matching. Technical report (August 01, 2008)

    Google Scholar 

  31. Völker, J., Niepert, M.: Statistical Schema Induction. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 124–138. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  32. Völker, J., Rudolph, S.: Fostering web intelligence by semi-automatic OWL ontology refinement. In: Web Intelligence, pp. 454–460. IEEE (2008)

    Google Scholar 

  33. Völker, J., Vrandečić, D., Sure, Y., Hotho, A.: Learning Disjointness. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 175–189. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  34. Wu, H., Zubair, M., Maly, K.: Harvesting social knowledge from folksonomies. In: Proceedings of the Seventeenth Conference on Hypertext and Hypermedia, HYPERTEXT 2006, pp. 111–114. ACM, New York (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bühmann, L., Lehmann, J. (2012). Universal OWL Axiom Enrichment for Large Knowledge Bases. In: ten Teije, A., et al. Knowledge Engineering and Knowledge Management. EKAW 2012. Lecture Notes in Computer Science(), vol 7603. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33876-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33876-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33875-5

  • Online ISBN: 978-3-642-33876-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics