Nature-Inspired Algorithms Applied to an Efficient and Self-adaptive Resources Selection Model for Grid Applications

  • María Botón-Fernández
  • Francisco Prieto Castrillo
  • Miguel A. Vega-Rodríguez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7505)


Grid computing infrastructures are systems composed by an heterogeneous and geographically distributed resource set. Despite the advantages of such paradigm, several challenges related to grid resources selection and resources availability still demand active research.

The aim of this article is to provide an efficient and self-adaptive resources selection strategy for grid applications deployment. This resources adaptation capability is provided by applying nature-inspired algorithms during the selection process. Specifically, both the preferential attachment technique from Complex Network field and a cellular automata model are used.

Finally, the results obtained during tests in a real grid show that the proposed model achieves an effective use of grid resources, resulting in a reduction of application execution time and in an increased rate of successfully finished tasks. In conclusion, the model improves the infrastructure throughput for grid applications.


Self-adaptivity nature-inspired computing grid computing complex network resources selection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Foster, I.: What is the Grid? A three Point Checklist. GRIDtoday 1(6), 22–25 (2002)MathSciNetGoogle Scholar
  2. 2.
    Foster, I.: The Anatomy of the Grid: Enabling Scalable Virtual Organizations. In: Sakellariou, R., Keane, J.A., Gurd, J.R., Freeman, L. (eds.) Euro-Par 2001. LNCS, vol. 2150, pp. 1–4. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  3. 3.
    Huedo, E., Montero, R.S., Llorente, I.M.: A Framework for Adaptive Execution in Grids. Software: Practice & Experience 34(7), 631–651 (2004)CrossRefGoogle Scholar
  4. 4.
    Keung, H.N.L.C., Dyson, J.R.D., Jarvis, S.A., Nudd, G.R.: Self-Adaptive and Self-Optimising Resource Monitoring for Dynamic Grid Environments. In: DEXA 2004 Proceedings of the Database and Expert Systems Applications, 15th International Workshop, pp. 689–693. IEEE Computer Society, Zaragoza (2004)Google Scholar
  5. 5.
    Vadhiyar, S.S., Dongarra, J.J.: Self Adaptivity in Grid Computing. Concurrency and Computation: Practice & Experience 17(2-4), 235–257 (2005)CrossRefGoogle Scholar
  6. 6.
    Wrzesinska, G., Maassen, J., Bal, H.E.: Self-adaptive Applications on the Grid. In: 12th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, San Jose, California, USA, pp. 121–129 (2007)Google Scholar
  7. 7.
    Groen, D., Harfst, S., Zwart, S.P.: On the Origin of Grid Species: The Living Application. In: Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2009, Part I. LNCS, vol. 5544, pp. 205–212. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Batista, D.M., Da Fonseca, L.S.: A Survey of Self-adaptive Grids. IEEE Communications Magazine 48(7), 94–100 (2010)CrossRefGoogle Scholar
  9. 9.
    Neuman, J.V.: The Theory of Self-Reproducing Automata. In: Burks, A.W. (ed.). University of Illinois Press, Champaign (1966)Google Scholar
  10. 10.
    Beyer, W.A., Sellers, P.H., Waterman, M.S.: Stanislaw M. Ulams Contributions to Theoretical Theory. Letters in Mathematical Physics 10, 231–242 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Zuse, K.: Rechnender Raum. Elektronische Datenverarbeitung 8, 336–344 (1967); MIT Technical Translation (1970) Google Scholar
  12. 12.
    Gardner, M.: Mathematical Games: the Fantastic Combinations of John Conway’s New Solitaire Game ”Life”. Scientific American 223(4), 120–123 (1970)CrossRefGoogle Scholar
  13. 13.
    Yang, X.S., Yang, Y.Z.L.: Cellular Automata Networks. In: Adamatzky, A., Bull, L., De Lacy Costello, B., Stepney, S., Teuscher, C. (eds.) Proceedings of Unconventional Computing, pp. 280–302. Luniver Press, UWE and EPSRC (2007)Google Scholar
  14. 14.
    Tomassini, M.: Generalized Automata Networks. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 14–28. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    National Grid Initiative of Spain,
  16. 16.
    Botón-Fernández, M., Castrillo, F.P., Vega-Rodríguez, M.A.: Self-Adaptive Deployment of Parametric Sweep Applications through a Complex Networks Perspective. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011, Part II. LNCS, vol. 6783, pp. 475–489. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Barabási, A.-L., Réka, A.: Emergence of Scaling in Random Networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Santiago, A., Benito, R.M.: An Extended Formalism for Preferential Attachment in Heterogeneous Complex Networks. Europhysics Letters 82(5) (2008)Google Scholar
  19. 19.
    The Iberian Grid Infrastructure Initiative,
  20. 20.
    Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipies in C. Press Syndicate of the University of Cambridge, New York (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • María Botón-Fernández
    • 1
  • Francisco Prieto Castrillo
    • 1
  • Miguel A. Vega-Rodríguez
    • 2
  1. 1.Department of Science and TechnologyCeta-CiematTrujilloSpain
  2. 2.Dept. Technologies of Computers and CommunicationsUniversity of ExtremaduraCáceresSpain

Personalised recommendations