Advertisement

The Fragility of Quantum Information?

  • Barbara M. Terhal
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7505)

Abstract

We address the question whether there is a fundamental reason why quantum information is more fragile than classical information. We show that some answers can be found by considering the existence of quantum memories and their dimensional dependence.

Keywords

Ising Model Logical Operator Parity Check Topological Order Quantum Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alicki, R., Fannes, M., Horodecki, M.: On thermalization in Kitaev’s 2D model. Journal of Physics A Mathematical General 42(6), 065303 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Alicki, R., Horodecki, M., Horodecki, P., Horodecki, R.: On thermal stability of topological qubit in Kitaev’s 4D model. Open Sys.Inf. Dyn. 17, 1 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Anderson, P.W.: Basic notions of condensed matter physics. Frontiers in Physics, vol. 55. Benjamin/Cummings, Menlo Park (1984)Google Scholar
  4. 4.
    Ashcroft, N.W., Mermin, N.D.: Solid State Physics. Saunders College, Philadelphia (1976)Google Scholar
  5. 5.
    Bacon, D.: Operator quantum error-correcting subsystems for self-correcting quantum memories. Physical Review A 73(1), 012340 (2006)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bravyi, S., Haah, J.: Analytic and numerical demonstration of quantum self-correction in the 3D Cubic Code. ArXiv e-prints (2011), http://arxiv.org/abs/1112.3252
  7. 7.
    Bravyi, S., Haah, J.: Energy Landscape of 3D Spin Hamiltonians with Topological Order. Physical Review Letters 107(15), 150504 (2011)CrossRefGoogle Scholar
  8. 8.
    Bravyi, S., Hastings, M.B., Michalakis, S.: Topological quantum order: Stability under local perturbations. Journal of Mathematical Physics 51(9), 093512 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bravyi, S., Terhal, B.: A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes. New Journal of Physics 11, 043029 (2009)CrossRefGoogle Scholar
  10. 10.
    Castelnovo, C., Chamon, C.: Topological order in a three-dimensional toric code at finite temperature. Phys. Rev. B 78(15), 155120 (2008)CrossRefGoogle Scholar
  11. 11.
    Levin, D.A., Peres, Y., Wilmer, E.L.: Markov Chains and Mixing Times. American Mathematical Society, Providence (2008)Google Scholar
  12. 12.
    Dennis, E., Kitaev, A., Landahl, A., Preskill, J.: Topological quantum memory. J. Math. Phys. 43, 4452–4505 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Fowler, A.G., Stephens, A.M., Groszkowski, P.: High-threshold universal quantum computation on the surface code. Physical Review A 80(5), 052312 (2009)CrossRefGoogle Scholar
  14. 14.
    Kitaev, A.: Fault-tolerant quantum computation by anyons. Annals of Physics 303(1), 2–30 (2003), http://arxiv.org/abs/quant-ph/9707021 MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Kogut, J.B.: An introduction to lattice gauge theory and spin systems. Rev. Mod. Phys. 51(4), 659–713 (1979)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Likharev, K., Semenov, V.: RSFQ logic/memory family: a new josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Transactions on Applied Superconductivity 1(1), 3–28 (1991)CrossRefGoogle Scholar
  17. 17.
    Mooij, J.E., Orlando, T.P., Levitov, L., Tian, L., van der Wal, C.H., Lloyd, S.: Josephson persistent-current qubit. Science 285(5430), 1036–1039 (1999), http://www.sciencemag.org/content/285/5430/1036.abstract CrossRefGoogle Scholar
  18. 18.
    Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  19. 19.
    Peierls, R.: On Ising’s model of ferromagnetism. Mathematical Proceedings of the Cambridge Philosophical Society 32(03), 477–481 (1936)zbMATHCrossRefGoogle Scholar
  20. 20.
    Raussendorf, R., Harrington, J., Goyal, K.: Topological fault-tolerance in cluster state quantum computation. New J. Phys. 9, 199–219 (2007)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Tinkham, M.: Introduction to superconductivity. McGraw-Hill, New York (1975)Google Scholar
  22. 22.
    Wegner, F.: Duality in generalized Ising models and phase transitions without local order parameter. J. Math. Phys. 12, 2259–2272 (1971)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Yoshida, B.: Feasibility of self-correcting quantum memory and thermal stability of topological order. Annals of Physics 326, 2566–2633 (2011)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Barbara M. Terhal
    • 1
  1. 1.Institute for Quantum InformationRWTH Aachen UniversityAachenGermany

Personalised recommendations