Advertisement

Theory and Applications of DNA Codeword Design

  • Max H. Garzon
Conference paper
  • 714 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7505)

Abstract

We survey the origin, current progress and applications on one major roadblock to the development of analytic models for DNA computing and self-assembly, namely the so-called Codeword Design problem. The problem calls for finding large sets of single DNA strands that do not crosshybridize to themselves or to their complements (so-called domains in the language of chemical reaction networks) and has been recognized as an important problem in DNA computing, self-assembly, DNA memories and phylogenetic analyses because of their error correction and prevention properties. Major recent advances include the development of experimental techniques to search for such codes, as well as a theoretical framework to analyze this problem, despite the fact that it has been proven to be NP-complete using any single concrete metric space to model the Gibbs energy. In this framework, codeword design is reduced to finding large sets of strands maximally separated in DNA spaces and, therefore, the key to finding such sets would lie in knowledge of the geometry of these spaces. A new general technique has been recently found to embed them in Euclidean spaces in a hybridization-affinity-preserving manner, i.e., in such a way that oligos with high/low hybridization affinity are mapped to neighboring/remote points in a geometric lattice, respectively. This isometric embedding materializes long-held mataphors about codeword design in terms of sphere packing and leads to designs that are in some cases known to be provable nearly optimal for some oligo sizes. It also leads to upper and lower bounds on estimates of the size of optimal codes of size up to 32 −mers, as well as to infinite families of DNA strand lengths, based on estimates of the kissing (or contact) number for sphere packings in Euclidean spaces. Conversely, this reduction suggests interesting new algorithms to find dense sphere packing solutons in high dimensional spheres using prior results for codeword design priorly obtained by experimental or theoretical molecular means, as well as to a proof that finding these bounds exactly is NP-complete in general. Finally, some applications and research problems arising from these results are described that might be of interest for further research.

Keywords

Gibbs energy DNA space molecular chip design noncrosshybridizing oligonucleotide bases spherical codes DNA memories phylogenetic analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adleman, L.: Molecular computation of solutions of combinatorial problems. Science 266, 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Arita, M., Kobayashi, S.: DNA Sequence Design Using Templates. New Generation Computing 20(3), 263–277 (2002)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bobba, K.C., Neel, A.J., Phan, V., Garzon, M.H.: “Reasoning” and “Talking” DNA: Can DNA Understand English? In: Mao, C., Yokomori, T. (eds.) DNA12. LNCS, vol. 4287, pp. 337–349. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Chen, J., Deaton, R., Garzon, M., Wood, D.H., Bi, H., Carpenter, D., Wang, Y.Z.: Characterization of Non-Crosshybridizing DNA Oligonucleotides Manufactured in vitro. J. of Natural Computing 5(2), 165–181 (2006)zbMATHCrossRefGoogle Scholar
  5. 5.
    Deaton, J., Chen, J., Garzon, M., Wood, D.H.: Test Tube Selection of Large Independent Sets of DNA Oligonucleotides, pp. 152–166. World Publishing Co., Singapore (2006) (Volume dedicated to Ned Seeman on occasion of his 60th birthday)Google Scholar
  6. 6.
    Doty, D., Patitz, M.J., Summers, S.M.: Limitations of Self-assembly at Temperature One. In: Deaton, R., Suyama, A. (eds.) DNA 15. LNCS, vol. 5877, pp. 35–44. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Garzon, M.H., Bobba, K.: A Geometric Approach to Gibbs Energy Landscapes and Optimal DNA Codeword Design. In: Stefanovic, D., Turberfield, A. (eds.) DNA 18. LNCS, vol. 7433, pp. 73–85. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Garzon, M.H., Bobba, K.C., Neel, A.J., Phan, V.: DNA-Based Indexing. Int. J. of Nanotechnology and Molecular Computing 2(3), 25–45 (2010)CrossRefGoogle Scholar
  9. 9.
    Garzon, M.H., Wong, T.Y.: DNA Chips for Species identification and Biological Phylogenies. J. Natural Computing 10, 375–389 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Garzon, M.H., Phan, V., Neel, A.: Optimal Codes for Computing and Self-Assembly. Int. J. of Nanotechnology and Molecular Computing 1, 1–17 (2009)CrossRefGoogle Scholar
  11. 11.
    Garzon, M.H., Yan, H. (eds.): DNA 2007. LNCS, vol. 4848. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  12. 12.
    Garzon, M.H., Phan, V., Bobba, K.C., Kontham, R.: Sensitivity and Capacity of Microarray Encodings. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 81–95. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Garzon, M.H., Deaton, R.: Codeword Design and Information Encoding in DNA Ensembles. J. of Natural Computing 3(3), 253–292 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Garzon, M.H., Blain, D., Neel, A.J.: Virtual Test Tubes for Biomolecular Computing. J. of Natural Computing 3(4), 461–477 (2004)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Garzon, M.H., Neathery, P.I., Deaton, R., Murphy, R.C., Franceschetti, D.R., Stevens Jr., S.E.: A New Metric for DNA Computing. In: Koza, J.R., et al. (eds.) Proc. 2nd Annual Genetic Programming Conference, pp. 230–237. Morgan Kaufmann (1997)Google Scholar
  16. 16.
    Marathe, A., Condon, A.E., Corn, R.M.: On combinatorial DNA word design. J. Computational Biology 8(3), 201–219 (2001)CrossRefGoogle Scholar
  17. 17.
    Neel, A.J., Garzon, M.H.: DNA-based Memories: A Survey. SCI, vol. 113, pp. 259–275. Springer (2008)Google Scholar
  18. 18.
    Neel, A., Garzon, M.H.: Semantic Retrieval in DNA-Based Memories with Gibbs Energy Models. Biotechnology Progress 22(1), 86–90 (2006)CrossRefGoogle Scholar
  19. 19.
    Phan, V., Garzon, M.H.: On Codeword Design in Metric DNA Spaces. J. Natural Computing 8(3), 571–588 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Roman, J.: The Theory of Error-Correcting Codes. Springer, Berlin (1995)Google Scholar
  21. 21.
    Sahu, S., Yin, P., Reif, J.H.: A Self-assembly Model of Time-Dependent Glue Strength. In: Carbone, A., Pierce, N.A. (eds.) DNA 11. LNCS, vol. 3892, pp. 290–304. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    SantaLucia, J.: A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc. Natl. Acad. Sci. 95(4), 1460–1465 (1998)CrossRefGoogle Scholar
  23. 23.
    Seeman, N.: Nuclei-Acid Junctions and Lattices. J. Theoretical Biology 99, 237–247 (1982)CrossRefGoogle Scholar
  24. 24.
    Seeman, N.: DNA in a material world. Nature 421, 427–431 (2003)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Tkachenko, A.V.: Theory of Programmable Hierarchic Self-Assembly. Phys. Rev. Lett. 106, 255501 (2011)CrossRefGoogle Scholar
  26. 26.
    Tulpan, D., Andronescu, M., Chang, S.B., Shortreed, M.R., Condon, A., Hoos, H.H., Smith, L.M.: Thermodynamically based DNA strand design. Nucleic Acids Res. 33(15), 4951–4964 (2005)CrossRefGoogle Scholar
  27. 27.
    Qian, L., Winfree, E.: Scaling Up Digital Circuit Computation with DNA Strand Displacement Cascades. Science 332, 1196–1201 (2011)CrossRefGoogle Scholar
  28. 28.
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)CrossRefGoogle Scholar
  29. 29.
    Winfree, E.: Algorithmic self-assembly of DNA. Ph.D. Thesis, California Institute of Technology (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Max H. Garzon
    • 1
  1. 1.Computer ScienceThe University of MemphisUSA

Personalised recommendations