Skip to main content

Maze Exploration with Molecular-Scale Walkers

  • Conference paper
Theory and Practice of Natural Computing (TPNC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 7505))

Included in the following conference series:

Abstract

Molecular spiders are nanoscale walkers made with catalytic DNA legs attached to a rigid body. They move in a matrix of DNA substrates, cleaving them and leaving behind product DNA strands. Unlike a self-avoiding walker, a spider is able to revisit the products. However, the legs cleave and detach from substrates more slowly than they detach from products. This difference in residence time and the presence of multiple legs make a spider move differently from an ordinary random walker. The number of legs, and their lengths, can be varied, and this defines the spider’s local gait, which affects its behavior in global tasks. In this work we define an abstract model of molecular spiders, and within it we study the efficiency of maze exploration as a function of the spider structure. For a fixed geometry, there is an optimal setting of chemical kinetics parameters that minimizes the mean time to traverse a maze.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nakagaki, T., Yamada, H., Tóth, A.: Maze-solving by an amoeboid organism. Nature 407, 470 (2000)

    Article  Google Scholar 

  2. Nicolau, D.V., Nicolau Jr., D.V., Solana, G., Hanson, K.L., Filipponi, L., Wang, L., Lee, A.P.: Molecular motors-based micro- and nano-biocomputation devices. Microelectronic Engineering 83(4-9), 1582–1588 (2006)

    Article  Google Scholar 

  3. Pei, R., Taylor, S.K., Stefanovic, D., Rudchenko, S., Mitchell, T.E., Stojanovic, M.N.: Behavior of polycatalytic assemblies in a substrate-displaying matrix. Journal of the American Chemical Society 128(39), 12693–12699 (2006)

    Article  Google Scholar 

  4. Lund, K., Manzo, A.J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.: Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010)

    Article  Google Scholar 

  5. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006)

    Article  Google Scholar 

  6. Pinheiro, A.V., Han, D., Shih, W.M., Yan, H.: Challenges and opportunities for structural DNA nanotechnology. Nature Nanotechnology 6, 763–772 (2011)

    Article  Google Scholar 

  7. Antal, T., Krapivsky, P.L., Mallick, K.: Molecular spiders in one dimension. Journal of Statistical Mechanics: Theory and Experiment 2007(08), P08027 (2007)

    Article  MathSciNet  Google Scholar 

  8. Antal, T., Krapivsky, P.L.: Molecular spiders with memory. Physical Review E 76(2), 021121 (2007)

    Article  Google Scholar 

  9. Semenov, O., Olah, M.J., Stefanovic, D.: Mechanism of diffusive transport in molecular spider models. Physical Review E 83(2), 021117 (2011)

    Article  Google Scholar 

  10. Olah, M.J., Stefanovic, D.: Multivalent Random Walkers — A Model for Deoxyribozyme Walkers. In: Cardelli, L., Shih, W. (eds.) DNA 17 2011. LNCS, vol. 6937, pp. 160–174. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  11. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn. Garland Science (2002)

    Google Scholar 

  12. Kolomeisky, A.B., Fisher, M.E.: Molecular motors: A theorist’s perspective. Annual Review of Physical Chemistry 58, 675–695 (2007)

    Article  Google Scholar 

  13. Bier, M.: The energetics, chemistry, and mechanics of a processive motor protein. BioSystems 93, 23–28 (2008)

    Article  Google Scholar 

  14. Astumian, R.D.: Thermodynamics and kinetics of molecular motors. Biophysical Journal 98, 2401–2409 (2010)

    Article  Google Scholar 

  15. Jamison, D.K., Driver, J.W., Rogers, A.R., Constantinou, P.E., Diehl, M.R.: Two kinesins transport cargo primarily via the action of one motor: Implications for intracellular transport. Biophysical Journal 99, 2967–2977 (2010)

    Article  Google Scholar 

  16. Lipowsky, R., Beeg, J., Dimova, R., Klumpp, S., Müller, M.K.I.: Cooperative behavior of molecular motors: Cargo transport and traffic phenomena. Physica E 42, 649–661 (2010)

    Article  Google Scholar 

  17. Driver, J.W., Jamison, D.K., Uppulury, K., Rogers, A.R., Kolomeisky, A.B., Diehl, M.R.: Productive cooperation among processive motors depends inversely on their mechanochemical efficiency. Biophysical Journal 101, 386–395 (2011)

    Article  Google Scholar 

  18. Kay, E.R., Leigh, D.A., Zerbetto, F.: Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007)

    Article  Google Scholar 

  19. Hugel, T., Lumme, C.: Bio-inspired novel design principles for artificial molecular motors. Current Opinion in Biotechnology 21(5), 683–689 (2010)

    Article  Google Scholar 

  20. Yurke, B., Turberfield, A.J., Mills Jr., A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)

    Article  Google Scholar 

  21. Shirai, Y., Osgood, A.J., Zhao, Y., Kelly, K.F., Tour, J.M.: Directional control in thermally driven single-molecule nanocars. Nano Letters 5(11), 2330–2334 (2005)

    Article  Google Scholar 

  22. Tian, Y., He, Y., Chen, Y., Yin, P., Mao, C.: A DNAzyme that walks processively and autonomously along a one-dimensional track. Angew. Chem. Int. Ed. 44, 4355–4358 (2005)

    Article  Google Scholar 

  23. Venkataraman, S., Dirks, R.M., Rothemund, P.W.K., Winfree, E., Pierce, N.A.: An autonomous polymerization motor powered by DNA hybridization. Nature Nanotechnology 2, 490–494 (2007)

    Article  Google Scholar 

  24. Green, S.J., Bath, J., Turberfield, A.J.: Coordinated chemomechanical cycles: A mechanism for autonomous molecular motion. Physical Review Letters 101, 238101–+ (2008)

    Article  Google Scholar 

  25. Omabegho, T., Sha, R., Seeman, N.C.: A bipedal DNA brownian motor with coordinated legs. Science 324, 67–71 (2009)

    Article  Google Scholar 

  26. Bath, J., Green, S.J., Allen, K.E., Turberfield, A.J.: Mechanism for a directional, processive, and reversible DNA motor. Small 5(13), 1513–1516 (2009)

    Article  Google Scholar 

  27. Gu, H., Chao, J., Xiao, S.J., Seeman, N.C.: A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202–206 (2010)

    Article  Google Scholar 

  28. Santoro, S.W., Joyce, G.F.: A general purpose RNA-cleaving DNA enzyme. Proceedings of the National Academy of Sciences of the USA (PNAS) 94, 4262–4266 (1997)

    Article  Google Scholar 

  29. Samii, L., Linke, H., Zuckermann, M.J., Forde, N.R.: Biased motion and molecular motor properties of bipedal spiders. Physical Review E 81(2), 021106–+ (2010)

    Article  Google Scholar 

  30. Semenov, O., Olah, M.J., Stefanovic, D.: Multiple Molecular Spiders with a Single Localized Source—The One-Dimensional Case. In: Cardelli, L., Shih, W. (eds.) DNA 17. LNCS, vol. 6937, pp. 204–216. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  31. Samii, L., Blab, G.A., Bromley, E.H.C., Linke, H., Curmi, P.M.G., Zuckermann, M.J., Forde, N.R.: Time-dependent motor properties of multipedal molecular spiders. Phys. Rev. E 84, 031111 (2011)

    Article  Google Scholar 

  32. Bortz, A.B., Kalos, M.H., Lebowitz, J.L.: A new algorithm for Monte Carlo simulation of Ising spin systems. Journal of Computational Physics 17(1), 10–18 (1975)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stefanovic, D. (2012). Maze Exploration with Molecular-Scale Walkers. In: Dediu, AH., Martín-Vide, C., Truthe, B. (eds) Theory and Practice of Natural Computing. TPNC 2012. Lecture Notes in Computer Science, vol 7505. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33860-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33860-1_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33859-5

  • Online ISBN: 978-3-642-33860-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics