Maze Exploration with Molecular-Scale Walkers

  • Darko Stefanovic
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7505)


Molecular spiders are nanoscale walkers made with catalytic DNA legs attached to a rigid body. They move in a matrix of DNA substrates, cleaving them and leaving behind product DNA strands. Unlike a self-avoiding walker, a spider is able to revisit the products. However, the legs cleave and detach from substrates more slowly than they detach from products. This difference in residence time and the presence of multiple legs make a spider move differently from an ordinary random walker. The number of legs, and their lengths, can be varied, and this defines the spider’s local gait, which affects its behavior in global tasks. In this work we define an abstract model of molecular spiders, and within it we study the efficiency of maze exploration as a function of the spider structure. For a fixed geometry, there is an optimal setting of chemical kinetics parameters that minimizes the mean time to traverse a maze.


molecular walkers maze search DNA computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nakagaki, T., Yamada, H., Tóth, A.: Maze-solving by an amoeboid organism. Nature 407, 470 (2000)CrossRefGoogle Scholar
  2. 2.
    Nicolau, D.V., Nicolau Jr., D.V., Solana, G., Hanson, K.L., Filipponi, L., Wang, L., Lee, A.P.: Molecular motors-based micro- and nano-biocomputation devices. Microelectronic Engineering 83(4-9), 1582–1588 (2006)CrossRefGoogle Scholar
  3. 3.
    Pei, R., Taylor, S.K., Stefanovic, D., Rudchenko, S., Mitchell, T.E., Stojanovic, M.N.: Behavior of polycatalytic assemblies in a substrate-displaying matrix. Journal of the American Chemical Society 128(39), 12693–12699 (2006)CrossRefGoogle Scholar
  4. 4.
    Lund, K., Manzo, A.J., Dabby, N., Michelotti, N., Johnson-Buck, A., Nangreave, J., Taylor, S., Pei, R., Stojanovic, M.N., Walter, N.G., Winfree, E., Yan, H.: Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010)CrossRefGoogle Scholar
  5. 5.
    Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006)CrossRefGoogle Scholar
  6. 6.
    Pinheiro, A.V., Han, D., Shih, W.M., Yan, H.: Challenges and opportunities for structural DNA nanotechnology. Nature Nanotechnology 6, 763–772 (2011)CrossRefGoogle Scholar
  7. 7.
    Antal, T., Krapivsky, P.L., Mallick, K.: Molecular spiders in one dimension. Journal of Statistical Mechanics: Theory and Experiment 2007(08), P08027 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Antal, T., Krapivsky, P.L.: Molecular spiders with memory. Physical Review E 76(2), 021121 (2007)CrossRefGoogle Scholar
  9. 9.
    Semenov, O., Olah, M.J., Stefanovic, D.: Mechanism of diffusive transport in molecular spider models. Physical Review E 83(2), 021117 (2011)CrossRefGoogle Scholar
  10. 10.
    Olah, M.J., Stefanovic, D.: Multivalent Random Walkers — A Model for Deoxyribozyme Walkers. In: Cardelli, L., Shih, W. (eds.) DNA 17 2011. LNCS, vol. 6937, pp. 160–174. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn. Garland Science (2002)Google Scholar
  12. 12.
    Kolomeisky, A.B., Fisher, M.E.: Molecular motors: A theorist’s perspective. Annual Review of Physical Chemistry 58, 675–695 (2007)CrossRefGoogle Scholar
  13. 13.
    Bier, M.: The energetics, chemistry, and mechanics of a processive motor protein. BioSystems 93, 23–28 (2008)CrossRefGoogle Scholar
  14. 14.
    Astumian, R.D.: Thermodynamics and kinetics of molecular motors. Biophysical Journal 98, 2401–2409 (2010)CrossRefGoogle Scholar
  15. 15.
    Jamison, D.K., Driver, J.W., Rogers, A.R., Constantinou, P.E., Diehl, M.R.: Two kinesins transport cargo primarily via the action of one motor: Implications for intracellular transport. Biophysical Journal 99, 2967–2977 (2010)CrossRefGoogle Scholar
  16. 16.
    Lipowsky, R., Beeg, J., Dimova, R., Klumpp, S., Müller, M.K.I.: Cooperative behavior of molecular motors: Cargo transport and traffic phenomena. Physica E 42, 649–661 (2010)CrossRefGoogle Scholar
  17. 17.
    Driver, J.W., Jamison, D.K., Uppulury, K., Rogers, A.R., Kolomeisky, A.B., Diehl, M.R.: Productive cooperation among processive motors depends inversely on their mechanochemical efficiency. Biophysical Journal 101, 386–395 (2011)CrossRefGoogle Scholar
  18. 18.
    Kay, E.R., Leigh, D.A., Zerbetto, F.: Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007)CrossRefGoogle Scholar
  19. 19.
    Hugel, T., Lumme, C.: Bio-inspired novel design principles for artificial molecular motors. Current Opinion in Biotechnology 21(5), 683–689 (2010)CrossRefGoogle Scholar
  20. 20.
    Yurke, B., Turberfield, A.J., Mills Jr., A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)CrossRefGoogle Scholar
  21. 21.
    Shirai, Y., Osgood, A.J., Zhao, Y., Kelly, K.F., Tour, J.M.: Directional control in thermally driven single-molecule nanocars. Nano Letters 5(11), 2330–2334 (2005)CrossRefGoogle Scholar
  22. 22.
    Tian, Y., He, Y., Chen, Y., Yin, P., Mao, C.: A DNAzyme that walks processively and autonomously along a one-dimensional track. Angew. Chem. Int. Ed. 44, 4355–4358 (2005)CrossRefGoogle Scholar
  23. 23.
    Venkataraman, S., Dirks, R.M., Rothemund, P.W.K., Winfree, E., Pierce, N.A.: An autonomous polymerization motor powered by DNA hybridization. Nature Nanotechnology 2, 490–494 (2007)CrossRefGoogle Scholar
  24. 24.
    Green, S.J., Bath, J., Turberfield, A.J.: Coordinated chemomechanical cycles: A mechanism for autonomous molecular motion. Physical Review Letters 101, 238101–+ (2008)CrossRefGoogle Scholar
  25. 25.
    Omabegho, T., Sha, R., Seeman, N.C.: A bipedal DNA brownian motor with coordinated legs. Science 324, 67–71 (2009)CrossRefGoogle Scholar
  26. 26.
    Bath, J., Green, S.J., Allen, K.E., Turberfield, A.J.: Mechanism for a directional, processive, and reversible DNA motor. Small 5(13), 1513–1516 (2009)CrossRefGoogle Scholar
  27. 27.
    Gu, H., Chao, J., Xiao, S.J., Seeman, N.C.: A proximity-based programmable DNA nanoscale assembly line. Nature 465, 202–206 (2010)CrossRefGoogle Scholar
  28. 28.
    Santoro, S.W., Joyce, G.F.: A general purpose RNA-cleaving DNA enzyme. Proceedings of the National Academy of Sciences of the USA (PNAS) 94, 4262–4266 (1997)CrossRefGoogle Scholar
  29. 29.
    Samii, L., Linke, H., Zuckermann, M.J., Forde, N.R.: Biased motion and molecular motor properties of bipedal spiders. Physical Review E 81(2), 021106–+ (2010)CrossRefGoogle Scholar
  30. 30.
    Semenov, O., Olah, M.J., Stefanovic, D.: Multiple Molecular Spiders with a Single Localized Source—The One-Dimensional Case. In: Cardelli, L., Shih, W. (eds.) DNA 17. LNCS, vol. 6937, pp. 204–216. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  31. 31.
    Samii, L., Blab, G.A., Bromley, E.H.C., Linke, H., Curmi, P.M.G., Zuckermann, M.J., Forde, N.R.: Time-dependent motor properties of multipedal molecular spiders. Phys. Rev. E 84, 031111 (2011)CrossRefGoogle Scholar
  32. 32.
    Bortz, A.B., Kalos, M.H., Lebowitz, J.L.: A new algorithm for Monte Carlo simulation of Ising spin systems. Journal of Computational Physics 17(1), 10–18 (1975)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Darko Stefanovic
    • 1
    • 2
  1. 1.Department of Computer ScienceUniversity of New MexicoUSA
  2. 2.Center for Biomedical EngineeringUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations