Tissue P Systems with Cell Separation: Upper Bound by PSPACE

  • Petr Sosík
  • Luděk Cienciala
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7505)


Tissue P systems are a class of bio-inspired computing models motivated by biochemical interactions between cells in a tissue-like arrangement. This organization is formally described by an interaction graph with membranes at its vertices. Membranes communicate by exchanging objects from a finite set. This basic model was enhanced with the operation of cell separation, resulting in tissue P systems with cell separation. Uniform families of tissue P systems were recently studied. Their computational power was shown to range between P and NP ∪ co − NP, characterizing borderlines between tractability and intractability by length of rules and some other features. Here we show that the computational power of these uniform families in polynomial time is limited from above by the class PSPACE. In this way we relate the information-processing potential of bio-inspired tissue-like systems to classical parallel computing models as PRAM or alternating Turing machine.


Tissue P system membrane computing membrane separation PSPACE 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alhazov, A., Martín-Vide, C., Pan, L.: Solving a PSPACE-complete problem by P systems with restricted active membranes. Fundamenta Informaticae 58(2), 67–77 (2003)MathSciNetGoogle Scholar
  2. 2.
    Alhazov, A., Freund, R., Oswald, M.: Tissue P Systems with Antiport Rules and Small Numbers of Symbols and Cells. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 100–111. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Bernardini, F., Gheorghe, M.: Cell communication in tissue P systems and cell division in population P systems. Soft Computing 9(9), 640–649 (2005)zbMATHCrossRefGoogle Scholar
  4. 4.
    Freund, R., Păun, G., Pérez-Jiménez, M.: Tissue P systems with channel states. Theoretical Computer Science 330, 101–116 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Gutiérrez–Escudero, R., Pérez–Jiménez, M.J., Rius–Font, M.: Characterizing Tractability by Tissue-Like P Systems. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) WMC 2009. LNCS, vol. 5957, pp. 289–300. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Krishna, S., Lakshmanan, K., Rama, R.: Tissue P Systems with Contextual and Rewriting Rules. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 339–351. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Lakshmanan, K., Rama, R.: The computational efficiency of insertion deletion tissue P systems. In: Subramanian, K., Rangarajan, K., Mukund, M. (eds.) Formal Models, Languages and Applications, pp. 235–245. World Scientific (2006)Google Scholar
  8. 8.
    Martín-Vide, C., Pazos, J., Păun, G., Rodríguez-Patón, A.: A New Class of Symbolic Abstract Neural Nets: Tissue P Systems. In: Ibarra, O.H., Zhang, L. (eds.) COCOON 2002. LNCS, vol. 2387, pp. 290–299. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Martín Vide, C., Pazos, J., Păun, G., Rodríguez Patón, A.: Tissue P systems. Theoretical Computer Science 296, 295–326 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Pan, L., Ishdorj, T.O.: P systems with active membranes and separation rules. Journal of Universal Computer Science 10(5), 630–649 (2004)MathSciNetGoogle Scholar
  11. 11.
    Pan, L., Pérez-Jiménez, M.: Computational complexity of tissue–like P systems. Journal of Complexity 26(3), 296–315 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane Computing. Oxford University Press, Oxford (2010)zbMATHGoogle Scholar
  13. 13.
    Pérez-Jiménez, M., Romero-Jiménez, A., Sancho-Caparrini, F.: A polynomial complexity class in P systems using membrane division. Journal of Automata, Languages and Combinatorics 11(4), 423–434 (2006)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Păun, A., Păun, G.: The power of communication: P systems with symport/antiport. New Generation Comput. 20(3), 295–306 (2002)zbMATHCrossRefGoogle Scholar
  15. 15.
    Păun, G., Pérez-Jiménez, M., Riscos-Núñez, A.: Tissue P systems with cell division. Int. J. of Computers, Communications and Control 3(3), 295–303 (2008)Google Scholar
  16. 16.
    Sosík, P.: Limits of the power of tissue P systems with cell division. In: Proceedings of the Thirteenth International Conference on Membrane Computing (to appear, 2012)Google Scholar
  17. 17.
    Sosík, P., Rodríguez-Patón, A.: Membrane computing and complexity theory: A characterization of PSPACE. J. Comput. System Sci. 73(1), 137–152 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    The P Systems Web Page, (cit. May 29, 2012)

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Petr Sosík
    • 1
    • 2
  • Luděk Cienciala
    • 2
  1. 1.Departamento de Inteligencia Artificial, Facultad de InformáticaUniversidad Politécnica de MadridBoadilla del MonteSpain
  2. 2.Research Institute of the IT4Innovations Centre of Excellence, Faculty of Philosophy and ScienceSilesian University in OpavaOpavaCzech Republic

Personalised recommendations