Wolbachia Infection Improves Genetic Algorithms as Optimization Procedure

  • Mauricio Guevara-Souza
  • Edgar E. Vallejo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7505)


This paper shows how the addition of Wolbachia infection can improve evolutionary function optimization by preventing the system from sticking at local optima. Firstly a variant of genetic algorithms that allows the introduction of Wolbachia is described. Then an application of this system to the optimization of a collection of mutimodal functions is described. Finally, we show how the introduction of Wolbachia infection improves the procedure in terms of both fitness and the number of generations required to obtain the solutions.


Wolbachia function optimization genetic algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alba, E., Dorronsoro, B.: Cellular Genetic Algorithms. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  2. 2.
    Coello, C.A., Lamont, G.B., Veldhuizen, D.V.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  3. 3.
    Crain, P.R., Mains, J.W., Suh, E., et al.: Wolbachia infections that reduce immature insect survival: Predicted impacts on population replacement. BMC Evolutionary Biology 11, 290 (2011)CrossRefGoogle Scholar
  4. 4.
    Digalakis, J.G., Margaritis, K.G.: An experimental study of benchmarking functions for genetic algorithms. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 3810–3815. IEEE Press, New York (2000)Google Scholar
  5. 5.
    Dobson, S.L., Fox, W.C., Jiggins, F.M.: The effect of wolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems. Proc. Biol. Sci. 269(1490), 437–445 (2002)CrossRefGoogle Scholar
  6. 6.
    Guevara, M., Vallejo, E.E.: Computer simulation on the maternal effect dominant embryonic arrest (medea) for disease vector population replacement. In: 11th Annual Conference on Genetic and Evolutionary Computation, GECCO 2009, pp. 1787–1788. ACM Press, New York (2009)CrossRefGoogle Scholar
  7. 7.
    Guevara, M., Vallejo, E.E.: A computer simulation model of gene replacement in vector populations. In: 8th IEEE International Conference on BioInformatics and BioEngineering, BIBE 2008, pp. 1–6. IEEE Press, New York (2008)CrossRefGoogle Scholar
  8. 8.
    Hoffman, A.A., Montgomery, B.L., Popovici, J., et al.: Successful establishment of wolbachia in aedes populations to suppress dengue transmission. Nature 476, 454–459 (2011)CrossRefGoogle Scholar
  9. 9.
    Marshall, J.M., Taylor, C.E.: Malaria control with transgenic mosquitoes. PLoS Medicine 6, 164–168 (2009)CrossRefGoogle Scholar
  10. 10.
    McMeniman, C.J., Lane, R.V., Cass, B.N., et al.: Stable introduction of a life-shortening wolbachia infection into the mosquito aedes aegypti. Science 323, 141–144 (2009)CrossRefGoogle Scholar
  11. 11.
    Mitchell, M.: An Introduction to Genetic Algorithms. The MIT Press, Cambridge (1996)Google Scholar
  12. 12.
    Presgraves, D.C.: A genetic test of the mechanism of wolbachia-induced cytoplasmic incompatibility in drosophila. Genetics 154, 771–776 (2000)Google Scholar
  13. 13.
    Tang, K., Li, X., Suganthan, P.N., et al.: Benchmark functions for the cec 2010 special session and competition on large scale global optimization. Technical report. Nature Inspired Computation and Applications Laboratory, USTC, China (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mauricio Guevara-Souza
    • 1
  • Edgar E. Vallejo
    • 1
  1. 1.Computer Science DepartmentTecnológico de Monterrey, Campus Estado de MéxicoMéxico

Personalised recommendations